Skip to main content

Advertisement

Log in

Modification of PMMA vertebroplasty cement for reduced stiffness by addition of normal saline: a material properties evaluation

  • Original Article
  • Published:
European Spine Journal Aims and scope Submit manuscript

Abstract

Purpose

Vertebral augmentation is an established treatment for patients with pathological vertebral compression fractures. These procedures typically employ a PMMA-based bone cement, which possesses a high compressive stiffness. Because of the increased risk of subsequent fractures after vertebral augmentations, there is a desire for reducing this stiffness. The goal of our study was to examine the influence of adding isotonic saline on the biomechanical properties of PMMA vertebroplasty cement.

Methods

A PMMA-based vertebroplasty cement was prepared according to the manufacturer’s recommendations after which isotonic saline was mixed into the cement at 10, 20, and 30% (volume:volume). Testing bodies were cast, and compression and bending tests were performed. Fracture surfaces were studied using SEM. Measurements of injectability, setting temperature, and radioopacity were also performed.

Results

The addition of saline solution (of up to vol-30%) led to a pronounced reduction in the compression modulus of the cement from 3409 ± 312 to 1131 ± 127 MPa. In parallel, maximal compression strength was reduced from 86 ± 4 to 33 ± 3 MPa and bending strength from 40 ± 4 to 24 ± 3 MPa. The differences regarding injectability, setting temperature, and radioopacity were small and probably of no clinical relevance.

Conclusions

The compressive stiffness of PMMA-based vertebroplasty cement can be reduced to almost a third by the addition of saline. The probable explanation is an increase in microporosity. Future simulator experiments will show whether the achieved reduction in stiffness is large enough to reduce the rate of subsequent vertebral fractures.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Rho YJ, Choe WJ, Chun YI (2012) Risk factors predicting the new symptomatic vertebral compression fractures after percutaneous vertebroplasty or kyphoplasty. Eur Spine J 21:905–911. doi:10.1007/s00586-011-2099-5

    Article  PubMed  Google Scholar 

  2. Mudano AS, Bian J, Cope JU, Curtis JR, Gross TP, Allison JJ, Kim Y, Briggs D, Melton ME, Xi J, Saag KG (2009) Vertebroplasty and kyphoplasty are associated with an increased risk of secondary vertebral compression fractures: a population-based cohort study. Osteoporos Int 20:819–826. doi:10.1007/s00198-008-0745-5

    Article  CAS  PubMed  Google Scholar 

  3. Wilcox RK (2006) The biomechanical effect of vertebroplasty on the adjacent vertebral body: a finite element study. Proc Inst Mech Eng H 220:565–572

    Article  CAS  PubMed  Google Scholar 

  4. Ren HL, Jiang JM, Chen JT, Wang JX (2015) Risk factors of new symptomatic vertebral compression fractures in osteoporotic patients undergone percutaneous vertebroplasty. Eur Spine J 24:750–758. doi:10.1007/s00586-015-3786-4

    Article  PubMed  Google Scholar 

  5. Rohlmann A, Zander T, Bergmann G (2006) Spinal loads after osteoporotic vertebral fractures treated by vertebroplasty or kyphoplasty. Eur Spine J 15:1255–1264. doi:10.1007/s00586-005-0018-3

    Article  PubMed  Google Scholar 

  6. Kim JM, Shin DA, Byun DH, Kim HS, Kim S, Kim HI (2012) Effect of bone cement volume and stiffness on occurrences of adjacent vertebral fractures after vertebroplasty. J Korean Neurosurg Soc 52:435–440. doi:10.3340/jkns.2012.52.5.435

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Blattert TR, Jestaedt L, Weckbach A (2009) Suitability of a calcium phosphate cement in osteoporotic vertebral body fracture augmentation: a controlled, randomized, clinical trial of balloon kyphoplasty comparing calcium phosphate versus polymethylmethacrylate. Spine 34:108–114. doi:10.1097/BRS.0b013e31818f8bc1

    Article  PubMed  Google Scholar 

  8. Urlings TA, van der Linden E (2013) Elastoplasty: first experience in 12 patients. Cardiovasc Intervent Radiol 36:479–483. doi:10.1007/s00270-012-0409-x

    Article  PubMed  Google Scholar 

  9. Schulte TL, Keiler A, Riechelmann F, Lange T, Schmoelz W (2013) Biomechanical comparison of vertebral augmentation with silicone and PMMA cement and two filling grades. Eur Spine J 22:2695–2701. doi:10.1007/s00586-013-2908-0

    Article  PubMed  PubMed Central  Google Scholar 

  10. Gilula L, Persenaire M (2013) Subsequent fractures post-vertebral augmentation: analysis of a prospective randomized trial in osteoporotic vertebral compression fractures. AJNR Am J Neuroradiol 34:221–227. doi:10.3174/ajnr.A3156

    Article  CAS  PubMed  Google Scholar 

  11. Bae H, Hatten HP Jr, Linovitz R, Tahernia AD, Schaufele MK, McCollom V, Gilula L, Maurer P, Benyamin R, Mathis JM, Persenaire M (2012) A prospective randomized FDA-IDE trial comparing Cortoss with PMMA for vertebroplasty: a comparative effectiveness research study with 24-month follow-up. Spine (Phila Pa 1976) 37:544–550. doi:10.1097/BRS.0b013e31822ba50b

    Article  Google Scholar 

  12. Bae H, Shen M, Maurer P, Peppelman W, Beutler W, Linovitz R, Westerlund E, Peppers T, Lieberman I, Kim C, Girardi F (2010) Clinical experience using Cortoss for treating vertebral compression fractures with vertebroplasty and kyphoplasty: 24-month follow-up. Spine (Phila Pa 1976) 35:E1030–E1036. doi:10.1097/BRS.0b013e3181dcda75

    Article  Google Scholar 

  13. Boger A, Bohner M, Heini P, Schwieger K, Schneider E (2008) Performance of vertebral cancellous bone augmented with compliant PMMA under dynamic loads. Acta Biomater 4:1688–1693. doi:10.1016/j.actbio.2008.06.019

    Article  CAS  PubMed  Google Scholar 

  14. Boger A, Bisig A, Bohner M, Heini P, Schneider E (2008) Variation of the mechanical properties of PMMA to suit osteoporotic cancellous bone. J Biomater Sci Polym Ed 19:1125–1142. doi:10.1163/156856208785540154

    Article  CAS  PubMed  Google Scholar 

  15. Kolb JP, Kueny RA, Puschel K, Boger A, Rueger JM, Morlock MM, Huber G, Lehmann W (2013) Does the cement stiffness affect fatigue fracture strength of vertebrae after cement augmentation in osteoporotic patients? Eur Spine J 22:1650–1656. doi:10.1007/s00586-013-2809-2

    Article  PubMed  PubMed Central  Google Scholar 

  16. Boger A, Bohner M, Heini P, Verrier S, Schneider E (2008) Properties of an injectable low modulus PMMA bone cement for osteoporotic bone. J Biomed Mater Res B Appl Biomater 86:474–482. doi:10.1002/jbm.b.31044

    Article  PubMed  Google Scholar 

  17. Lopez A, Mestres G, Karlsson Ott M, Engqvist H, Ferguson SJ, Persson C, Helgason B (2014) Compressive mechanical properties and cytocompatibility of bone-compliant, linoleic acid-modified bone cement in a bovine model. J Mech Behav Biomed Mater 32:245–256. doi:10.1016/j.jmbbm.2014.01.002

    Article  CAS  PubMed  Google Scholar 

  18. Kinzl M, Benneker LM, Boger A, Zysset PK, Pahr DH (2012) The effect of standard and low-modulus cement augmentation on the stiffness, strength, and endplate pressure distribution in vertebroplasty. Eur Spine J 21:920–929. doi:10.1007/s00586-011-2119-5

    Article  PubMed  Google Scholar 

  19. Lam WM, Pan HB, Fong MK, Cheung WS, Wong KL, Li ZY, Luk KD, Chan WK, Wong CT, Yang C, Lu WW (2011) In Vitro characterization of low modulus linoleic acid coated strontium-substituted hydroxyapatite containing PMMA bone cement. J Biomed Mater Res B Appl Biomater 96:76–83. doi:10.1002/jbm.b.31741

    Article  CAS  PubMed  Google Scholar 

  20. Slane J, Vivanco J, Meyer J, Ploeg HL, Squire M (2014) Modification of acrylic bone cement with mesoporous silica nanoparticles: effects on mechanical, fatigue and absorption properties. J Mech Behav Biomed Mater 29:451–461. doi:10.1016/j.jmbbm.2013.10.008

    Article  CAS  PubMed  Google Scholar 

  21. Ahn DK, Lee S, Choi DJ, Park SY, Woo DG, Kim CH, Kim HS (2009) Mechanical properties of blood-mixed polymethylmetacrylate in percutaneous vertebroplasty. Asian Spine J 3:45–52. doi:10.4184/asj.2009.3.2.45

    Article  PubMed  PubMed Central  Google Scholar 

  22. Ahn DK, Lee S, Choi DJ, Park SY, Woo DG, Kim CH, Kim HS (2009) Mechanical properties of blood-mixed PMMA in percutaneous vertebroplasty. J Korean Spine Surg 16:259–265. doi:10.4184/jkss.2009.16.4.259

    Article  Google Scholar 

  23. Standardization IOf (2002) ISO 5833:2002. In: Implants for surgery—Acrylic resin cements. International Organization for Standardization, Vernier, Geneva, Switzerland, p 22

  24. Birkenmaier C, Baumert S, Schroeder C, Jansson V, Wegener B (2012) A biomechanical evaluation of the epidural neurolysis procedure. Pain Physician 15:E89–E97

    PubMed  Google Scholar 

  25. Holub O, Lopez A, Borse V, Engqvist H, Kapur N, Hall RM, Persson C (2015) Biomechanics of low-modulus and standard acrylic bone cements in simulated vertebroplasty: a human ex vivo study. J Biomech 48:3258–3266. doi:10.1016/j.jbiomech.2015.06.026

    Article  PubMed  Google Scholar 

  26. Persson C, Lopez A, Fathali H, Hoess A, Rojas R, Ott MK, Hilborn J, Engqvist H (2016) The effect of oligo(trimethylene carbonate) addition on the stiffness of acrylic bone cement. Biomatter 6:e1133394. doi:10.1080/21592535.2015.1133394

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors wish to thank the German Spine Foundation (Deutsche Wirbelsäulenstiftung) for its crucial financial support of this study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christof Birkenmaier.

Ethics declarations

Conflict of interest

None of the authors has any potential conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Schröder, C., Nguyen, M., Kraxenberger, M. et al. Modification of PMMA vertebroplasty cement for reduced stiffness by addition of normal saline: a material properties evaluation. Eur Spine J 26, 3209–3215 (2017). https://doi.org/10.1007/s00586-016-4845-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00586-016-4845-1

Keywords

Navigation