Skip to main content

Advertisement

Log in

Study to determine the presence of progenitor cells in the degenerated human cartilage endplates

  • Original Article
  • Published:
European Spine Journal Aims and scope Submit manuscript

Abstract

Introduction

Cartilage endplate (CEP) degeneration is usually accompanied by loss of cellularity, and this loss may be a crucial key factor in initiation and development of degenerative disc disease. The study of cell types in degenerated CEP could help in understanding CEP etiopathogenesis, and may help in devising new treatments, especially if the presence of progenitor cells could be demonstrated. The aim of this study was to determine if progenitor cells existed in degenerated human CEP.

Materials and methods

Cells isolated from CEP were cultured in a three-dimensional agarose suspension to screen for proliferative cell clusters. Cell clusters were then expanded in vitro and the populations were analyzed for colony forming unit, immunophenotype, multilineage induction, and expression of stem cell-related genes.

Results

The presence of progenitor cells in degenerated human CEP is indicated by the results of CFU, immunophenotype, multilineage induction, and expression of stem cell-related genes.

Conclusions

We believe that this is the first study which has conclusively shown the presence of progenitor cells in degenerated CEP. The finding of this study may influence the clinical management of degenerative disc disorder.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Luoma K, Riihimaki H, Luukkonen R, Raininko R, Viikari-Juntura E, Lamminen A (2000) Low back pain in relation to lumbar disc degeneration. Spine 25:487–492

    Article  PubMed  CAS  Google Scholar 

  2. Holm S, Maroudas A, Urban JP, Selstam G, Nachemson A (1981) Nutrition of the intervertebral disc: solute transport and metabolism. Connect Tissue Res 8:101–119

    Article  PubMed  CAS  Google Scholar 

  3. Magnier C, Boiron O, Wendling-Mansuy S, Chabrand P, Deplano V (2009) Nutrient distribution and metabolism in the intervertebral disc in the unloaded state: a parametric study. J Biomech 42:100–108

    Article  PubMed  Google Scholar 

  4. Rajasekaran S, Venkatadass K, Naresh BJ, Ganesh K, Shetty AP (2008) Pharmacological enhancement of disc diffusion and differentiation of healthy, ageing and degenerated discs: results from in vivo serial post-contrast MRI studies in 365 human lumbar discs. Eur Spine J 17:626–643

    Article  PubMed  CAS  Google Scholar 

  5. Boyd LM, Carter AJ (2006) Injectable biomaterials and vertebral endplate treatment for repair and regeneration of the intervertebral disc. Eur Spine J 15(Suppl 3):S414–S421

    Article  PubMed  Google Scholar 

  6. Holm S, Holm AK, Ekstrom L, Karladani A, Hansson T (2004) Experimental disc degeneration due to endplate injury. J Spinal Disord Tech 17:64–71

    Article  PubMed  Google Scholar 

  7. Peng B, Hou S, Shi Q, Jia L (2001) The relationship between cartilage end-plate calcification and disc degeneration: an experimental study. Chin Med J (Engl) 114:308–312

    CAS  Google Scholar 

  8. Roberts S, Urban JP, Evans H, Eisenstein SM (1996) Transport properties of the human cartilage endplate in relation to its composition and calcification. Spine 21:415–420

    Article  PubMed  CAS  Google Scholar 

  9. Antoniou J, Goudsouzian NM, Heathfield TF, Winterbottom N et al (1996) The human lumbar endplate. Evidence of changes in biosynthesis and denaturation of the extracellular matrix with growth, maturation, aging, and degeneration. Spine 21:1153–1161

    Article  PubMed  CAS  Google Scholar 

  10. Ariga K, Miyamoto S, Nakase T, Okuda S et al (2001) The relationship between apoptosis of endplate chondrocytes and aging and degeneration of the intervertebral disc. Spine 26:2414–2420

    Article  PubMed  CAS  Google Scholar 

  11. Liebscher T, Haefeli M, Wuertz K, Nerlich AG, Boos N (2011) Age-related variation in cell density of human lumbar intervertebral disc. Spine 36:153–159

    Article  PubMed  Google Scholar 

  12. Moore RJ (2006) The vertebral endplate: disc degeneration, disc regeneration. Eur Spine J 15(Suppl 3):S333–S337

    Article  PubMed  Google Scholar 

  13. Hattori S, Oxford C, Reddi AH (2007) Identification of superficial zone articular chondrocyte stem/progenitor cells. Biochem Biophys Res Commun 358:99–103

    Article  PubMed  CAS  Google Scholar 

  14. Fickert S, Fiedler J, Brenner RE (2004) Identification of subpopulations with characteristics of mesenchymal progenitor cells from human osteoarthritic cartilage using triple staining for cell surface markers. Arthritis Res Ther 6:R422–R432

    Article  PubMed  CAS  Google Scholar 

  15. Alsalameh S, Amin R, Gemba T, Lotz M (2004) Identification of mesenchymal progenitor cells in normal and osteoarthritic human articular cartilage. Arthritis Rheum 50:1522–1532

    Article  PubMed  Google Scholar 

  16. Richardson SM, Hoyland JA, Mobasheri R, Csaki C, Shakibaei M, Mobasheri A (2010) Mesenchymal stem cells in regenerative medicine: opportunities and challenges for articular cartilage and intervertebral disc tissue engineering. J Cell Physiol 222:23–32

    Article  PubMed  CAS  Google Scholar 

  17. Risbud MV, Guttapalli A, Tsai TT, Lee JY et al (2007) Evidence for skeletal progenitor cells in the degenerate human intervertebral disc. Spine 32:2537–2544

    Article  PubMed  Google Scholar 

  18. Blanco JF, Graciani IF, Sanchez-Guijo FM, Muntion S et al (2010) Isolation and characterization of mesenchymal stromal cells from human degenerated nucleus pulposus: comparison with bone marrow mesenchymal stromal cells from the same subjects. Spine 35:2259–2265

    Article  PubMed  Google Scholar 

  19. Benya PD, Shaffer JD (1982) Dedifferentiated chondrocytes reexpress the differentiated collagen phenotype when cultured in agarose gels. Cell 30:215–224

    Article  PubMed  CAS  Google Scholar 

  20. Thornemo M, Tallheden T, Sjogren JE, Larsson A et al (2005) Clonal populations of chondrocytes with progenitor properties identified within human articular cartilage. Cells Tissues Organs 180:141–150

    Article  PubMed  CAS  Google Scholar 

  21. Modic MT, Steinberg PM, Ross JS, Masaryk TJ, Carter JR (1988) Degenerative disk disease: assessment of changes in vertebral body marrow with MR imaging. Radiology 166:193–199

    PubMed  CAS  Google Scholar 

  22. Sekiya I, Larson BL, Smith JR, Pochampally R, Cui JG, Prockop DJ (2002) Expansion of human adult stem cells from bone marrow stroma: conditions that maximize the yields of early progenitors and evaluate their quality. Stem Cells 20:530–541

    Article  PubMed  Google Scholar 

  23. Kolf CM, Cho E, Tuan RS (2007) Mesenchymal stromal cells. Biology of adult mesenchymal stem cells: regulation of niche, self-renewal and differentiation. Arthritis Res Ther 9:204–214

    Article  PubMed  Google Scholar 

  24. Dominici M, Le BK, Mueller I, Slaper-Cortenbach I et al (2006) Minimal criteria for defining multipotent mesenchymal stromal cells. The International Society for Cellular Therapy position statement. Cytotherapy 8:315–317

    Article  PubMed  CAS  Google Scholar 

  25. Dennis JE, Carbillet JP, Caplan AI, Charbord P (2002) The STRO-1+ marrow cell population is multipotential. Cells Tissues Organs 170:73–82

    Article  PubMed  Google Scholar 

  26. Carlin R, Davis D, Weiss M, Schultz B, Troyer D (2006) Expression of early transcription factors Oct-4, Sox-2 and Nanog by porcine umbilical cord (PUC) matrix cells. Reprod Biol Endocrinol 4:8–21

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Natural Science Foundation of China (No. 81071498 and No. 81071496).

Conflict of interest

None.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Chang-Qing Li or Yue Zhou.

Additional information

B. Huang and L.-T. Liu are co-first authors.

B. Huang and L.-T. Liu contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Huang, B., Liu, LT., Li, CQ. et al. Study to determine the presence of progenitor cells in the degenerated human cartilage endplates. Eur Spine J 21, 613–622 (2012). https://doi.org/10.1007/s00586-011-2039-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00586-011-2039-4

Keywords

Navigation