Skip to main content

Advertisement

Log in

Injectable biomaterials and vertebral endplate treatment for repair and regeneration of the intervertebral disc

  • Review
  • Published:
European Spine Journal Aims and scope Submit manuscript

Abstract

The objectives of augmentation of the nucleus pulposus following disc removal are to prevent disc height loss and the associated biomechanical and biochemical changes. Flowable materials may be injected via a small incision, allowing minimally invasive access to the disc space. Fluids can interdigitate with the irregular surgical defects and may even physically bond to the adjacent tissue. Injectable biomaterials allow for incorporation and uniform dispersion of cells and/or therapeutic agents. Injectable biomaterials have been developed that may act as a substitute for the disc nucleus pulposus. Our work has focused on the evaluation of a recombinant protein copolymer consisting of amino acid sequence blocks derived from silk and elastin structural proteins as an injectable biomaterial for augmentation of the nucleus pulposus. This implant, NuCore™ Injectable Nucleus is being developed by Spine Wave (Shelton, CT). The NuCore™ material is comprised of a solution of the protein polymer and a polyfunctional cross-linking agent. The material closely mimics the protein content, water content, pH and complex modulus of the natural nucleus pulposus. Extensive mechanical testing, biocompatibility and toxicology testing have been performed on the material. Characterization studies indicate that the NuCore™ Injectable Nucleus is able to restore the biomechanics of the disc following a microdiscectomy. Extensive biomaterial characterization shows the material to be non-toxic and biocompatible. The mechanical properties of the material mimic those of the natural nucleus pulposus. Thus NuCore™ Injectable Nucleus is suitable to replace the natural nucleus pulposus following a discectomy procedure. Human clinical evaluation is underway in a multi center clinical study on the use of the material as an adjunct to microdiscectomy. Further clinical studies of the use of NuCore™ Injectable Nucleus for treatment of early stage degenerative disc disease are planned in the near future. On-going efforts are characterizing the use of the material as a cell delivery vehicle for disc repair and reconstruction. Related development efforts are exploring methods for repair and regeneration of the cartilage endplate that are implemented to enhance the host-implant interface. Prior to the introduction of the above-mentioned biomaterial, our work proposes to utilize a process for the treatment of the vertebral endplates. The goal of this process is to restore the endplates as closely as possible to their natural state prior to disease or degeneration. The nature of the treatment will depend upon the form of the endplate degeneration and on the type of scaffolding that is intended to be introduced in the nuclear cavity. Endplate therapy is a potential means of enhancing biomaterial integration and cell survival, but remains a long-term and currently untested methodology.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Adams MA, Bogduk N, Burton K, Dolan P (2002) Summary: spinal ageing, degeneration and pain. In: Adams MA, Bogduk N, Burton K, Dolan P (eds) The biomechanics of back pain. Churchill Livingstone, New York, pp 197–203

    Google Scholar 

  2. Adams MA, Hutton WC (1983) The effects of posture on the fluid content of lumbar intervertebral discs. Spine 8:665–671

    Article  PubMed  CAS  Google Scholar 

  3. Atlas SJ, Deyo RA, Ancker Mvd, Singer DE, Keller RB, Patrick DL (2003) The Maine-Seattle back questionnaire: A 12-item disability questionnaire for evaluating patients with lumbar sciatica or stenosis. Spine 28:1869–1876

    Article  PubMed  Google Scholar 

  4. Bao Q-BH, Yuan A (2001) Implantable tissue repair device. Patent 6,224,630

    Google Scholar 

  5. Benneker LM, Heini PF, Anderson SE, Ito K (2005) Young investigator award winner: vertebral endplate marrow contact channel occlusions and intervertebral disc degeneration. Spine 7:97–102

    Google Scholar 

  6. Bernick S, Cailliet R (1982) Vertebral end-plate changes with aging of human vertebrae. Spine 7:97–102

    Article  PubMed  CAS  Google Scholar 

  7. Bibby SRS, Jones DA, Ribley RM, Urban JPG (2005) Metabolism of the intervertebral disc: effects of low levels of oxygen, glucose, and pH on rates of energy metabolism of bovine nucleus pulposus cells. Spine 30:487–496

    Article  PubMed  Google Scholar 

  8. Boos N, Weissbach S, Rohrbach H, Weiler C, Spratt KF, Nerlich AG (2002) Classification of age-related changes in lumbar intervertebral discs. Spine 27:2631–2644

    Article  PubMed  Google Scholar 

  9. Bos PK, DeGroot J, Budde M, Verhaar JA, Osch GJv (2002) Specific enzymatic treatment of bovine and human articular cartilage: Implications for integrative cartilage repair. Arthritis Rheum. 46:976–985

    Article  PubMed  CAS  Google Scholar 

  10. Bravenboer JvdB, Maur CDId, Bos PK, Feenstra L, Verhaar JA, Weinans H, van Osch GJVM (2005) Improved cartilage integration and interfacial strength after enzymatic treatment in a cartilage transplantation model. Arthritis Res Therapy 6:469–476

    Article  CAS  Google Scholar 

  11. Brinckmann P, Grootenboer H (1991) Change of disc height, radial disc bulge, and intradiscal pressure from discectomy: an in vitro investigation of human lumbar discs. Spine 16:641–646

    Article  PubMed  CAS  Google Scholar 

  12. Brodin H (1955) Paths of nutrition in articular cartilage and intervertebral discs. Acta Orthop Scand 24:177–183

    PubMed  CAS  Google Scholar 

  13. Buschmann MD, Gluzband YA, Grodzinsky AJ, Huziker EB (1995) Mechanical compression modulates matrix biosynthesis in chondrocyte/agarose culture. J Cell Sci 108:1497–1508

    PubMed  CAS  Google Scholar 

  14. Caplan AI, Elyaderani M, Mochizuki Y, Wakatani S, Goldberg VM (1997) Overview: Principles of cartilage repair and regeneration. Clin Orthop Rel Res 342:254–269

    Article  Google Scholar 

  15. Cappello J (1996) Genetically engineered protein polymers. In: Domb AJ, Kost J, Wiseman D (eds) Handbook of degradable polymers. Harwood Academic Publishers, Amsterdam, pp 387–414

    Google Scholar 

  16. Cappello J Ferrari F (1994) Microbial production of structural protein polymers. In: Mobley DP (ed) Plastics from microbes. Carl Hanser Verlag, Munich, pp 35–92

    Google Scholar 

  17. Cappello JE, Stedronsky R (2002) Synthetic proteins for in vivo drug delivery and tissue augmentation, U.S. Patent 6,380,154

    Google Scholar 

  18. Carragee EJ, Han MY, Yang B, Kim DH, Kraemer H, Billys J (1999) Activity restrictions after posterior lumbar discectomy: a prospective study of outcomes in 152 cases with no postoperative restrictions. Spine 24:2346–2351

    Article  PubMed  CAS  Google Scholar 

  19. Chandraraj S, Briggs CA, Opeskin K (1998) Disc herniations in the young and end-plate vascularity. Clin Anat 11:171–176

    Article  PubMed  CAS  Google Scholar 

  20. Chen J, Yan W, Setton LA (2004) Static compression induces zonal-specific changes in gene expression for extracellular matrix and cytoskeletal proteins in intervertebral disc cells in vitro. Matrix Biol 22:573–583

    Article  PubMed  CAS  Google Scholar 

  21. Chenite A, Chaput C, Wang D, Combes C, Buschmann MD, Hoemann CD, Leroux JC, Atkinson BL, Binette F, Selmani A (2000) Novel injectable neutral solutions of chitosan form biodegradable gels in situ. Biomaterials 21:2155–2161

    Article  PubMed  CAS  Google Scholar 

  22. Crock H, Goldwasser VM (1984) Anatomic studies of the circulation in the region of the vertebral end-plate in adult greyhound dogs. Spine 9:702–706

    Article  PubMed  CAS  Google Scholar 

  23. Donisch E, Trapp WW (1971) The cartilage endplates of the human vertebral column (some considerations of postnatal development). Anat Rec 169:705–716

    Article  PubMed  CAS  Google Scholar 

  24. Felt JC, Rydell MA, Zdrahala RJ, Arsenyev A (2001) Biomaterial for in situ tissue repair, U.S. Patent 6,306,177

  25. Ferrari FA, Richardson C, Chambers J, Causey S, Pollock TJ, Cappello J, Crissmann JW (2002) Peptides comprising repetitive units of amino acids and DNA sequences encoding the same, U.S. Patent 6,355,776

  26. Frymoyer JW, Hanley EN, Howe J, Kuhlmann D, Matteri RE (1979) A comparison of radiographic findings in fusion and nonfusion patients ten and more years following disc surgery. Spine 4:435–440

    Article  PubMed  CAS  Google Scholar 

  27. Gotfried Y, Bradford DS, Oegena TR Jr (1986) Facet joint changes after chemonucleolysis-induced disc space narrowing. Spine 11:944–950

    Article  PubMed  CAS  Google Scholar 

  28. Hassler O (1970) The human intervertebral disc: a micro-angiographical study of its vascular supply at various ages. Acta Orthop Scand 40:765–772

    Google Scholar 

  29. Hermantin FU, Peters T, Quartararo L, Kambin P (1999) A prospective, randomized study comparing the results of open discectomy with those of video-assisted arthroscopic microdiscectomy. J Bone Jt Surg 81-A:958–965

    Google Scholar 

  30. Hubbell JA, Pathak CP, Sawhney AS, Desai NP, Hill JL (1997) Photopolymerizable biodegradable hydrogels as tissue contacting materials and controlled-release microcarriers, U.S. Patent 5,626,863

  31. Hubbell JA, Wetering Pvd, Cowling DSP (2002) Novel polymer compounds, Patent 2002/0177680

  32. Iatridis JC, Mente PL, Stokes IAF, Aronsson DD, Alini M (1999) Compression -induced changes in intervertebral disc properties in a rat tail model. Spine 24:996–1002

    Article  PubMed  CAS  Google Scholar 

  33. Iatridis JC, Weidenbaum M, Setton LA, Mow VC (1996) Is the nucleus pulposus a solid or fluid? Mechanical behavior of the nucleus pulposus of the human intervertebral disc. Spine 21:1174–1184

    Article  PubMed  CAS  Google Scholar 

  34. Kitano T, Zerwekh J, Usui Y, Edwards M, Flickere P, Mooney V (1993) Biochemical changes associated with the symptomatic human intervertebral disc. Clin Orthop Rel Res 293:372–377

    Google Scholar 

  35. Kokkonen SM, Kurunlahti M, Tervonen O, Iikko E, Vanharanta H (2002) Endplate degeneration observed on magnetic resonance imaging of the lumbar spine: correlation with pain provocation and disc changes observed on computed tomography diskography. Spine 27:2274–2278

    Article  PubMed  Google Scholar 

  36. Lotz JC, Colliou OK, Chin JR, Duncan NA, Liebenberg E (1998) Compression-induced degeneration of the intervertebral disc: an in vivo mouse model and finite-element study. Spine 23:2493–2506

    Article  PubMed  CAS  Google Scholar 

  37. Mahar AT, Oka R, Whitledge J, Cappello JR, Powell J, McArthur T (2002) Biomechanical efficacy of a protein polymer hydrogel for inter-vertebral nucleus augmentation and replacement. World Congress on Biomechanics, Calgary, Canada, p 356

  38. Maroudas A, Stockwell RA, Nachemson A, Urban J (1975) Factors involved in the nutrition of the human lumbar intervertebral disc: cellularity and diffusion of glucose in vitro. J Anat 120:113–130

    PubMed  CAS  Google Scholar 

  39. Milner R, Arrowsmith P, Millan EJ (2001) Intervertebral disc implant, U.S. Patent 6,187,048

  40. Mochida J, Toh E, Nomura T, Nishimura K (2001) The risks and benefits of percutaneous nucleotomy for lumbar disc herniation: a ten-year longitudinal study. J Bone Jt Surg 83-B:501–505

    Article  Google Scholar 

  41. Modic MT, Steinberg PM, Ross JS, Masaryk TJ, Carter JR (1988) Degenerative disc disease: assessment of changes in vertebral body marrow with mr imaging. Radiology 166:193–199

    PubMed  CAS  Google Scholar 

  42. Nachemson A (1962) Some mechanical properties of the lumbar intervertebral disc. Bull Hosp Joint Dis 23:130–132

    PubMed  CAS  Google Scholar 

  43. Nachemson A, Lewin T, Maroudas A, Freeman MAR (1970) In vitro diffusion of dye through the end-plates and the annulus fibrosus of human lumbar inter-vertebral discs. Acta Orthop Scand 41:589–607

    Article  PubMed  CAS  Google Scholar 

  44. Natarajan RN, Ke JH, Andersson GBJ (1994) A model to study the disc degeneration process. Spine 19:259–265

    Article  PubMed  CAS  Google Scholar 

  45. Nishida K, Gilbertson LG, Evans CH, Kang JD (2000) Spine update: Potential applications of gene therapy to the treatment of spinal disorders. Spine 25:1308–1314

    Article  PubMed  CAS  Google Scholar 

  46. Ohshima H, Urban JPG, Bergel DH (1995) Effect of static load on matrix synthesis rates in the intervertebral disc measured in vitro by a new perfusion technique. J Orthop Res 13:22–29

    Article  PubMed  CAS  Google Scholar 

  47. Oki S, Matsuda Y, Shibata T, Okumura H, Desaki J (1996) Morphologic differences of the vascular buds in the vertebral endplate: scanning electron microscipic study. Spine 21:174–177

    Article  PubMed  CAS  Google Scholar 

  48. Paajanen H, Lehto I, Alanen A, Erkintalo M, Komu M (1994) Diurnal fluid changes of lumbar discs measured indirectly by magnetic resonance imaging. J Orthop Res 12:509–514

    Article  PubMed  CAS  Google Scholar 

  49. Panjabi MM, Krag MH, Chung TQ (1984) Effects of disc injury on mechanical behavior of the human spine. Spine 9:707–713

    Article  PubMed  CAS  Google Scholar 

  50. Pritzker KPH (1977) Aging and degeneration in the lumbar intervertebral disc. Orthop Clin North Am 8:65–77

    Google Scholar 

  51. Quinn T, Hunziker B (2002) Controlled enzymatic matrix degradation for integrative cartilage repair: effects on viable cell density and proteoglycan deposition. Tissue Eng. 8:799–806

    Article  PubMed  CAS  Google Scholar 

  52. Rhee WM, DeLustro FA, Berg RA (2001) Method of making crosslinked polymer matrices in tissue treatment applications, U.S. Patent 6,323,278

  53. Schneider P, Oyen GR (1974a) Intervertebral disc replacement, experimental studies, clinical consequences. Z Orthop Ihre Grenzgeb 112:791–792

    CAS  Google Scholar 

  54. Schneider P, Oyen GR (1974b) Plastic surgery on intervertebral disc: Part i intervertebral disc replacement in the lumbar regions with silicone rubber. Theoretical and experimental studies. Z Orthop Ihre Grenzgeb 112:1078–1086

    CAS  Google Scholar 

  55. Scoville W, Corkill BG (1973) Lumbar disc surgery: technique of radical removal and early mobilization. J Neurosurg 39:265–269

    Article  PubMed  CAS  Google Scholar 

  56. Stedronsky E, Cappello RJ (2002) Sealing or filling tissue defects using polyfunctional crosslinking agents and protein polymers, U.S. Patent 6,423,333

    Google Scholar 

  57. Tibrewal SB, Pearcy MJ (1985) Lumbar intervertebral disc heights in normal subjects and patients with disc herniation. Spine 10:452–454

    Article  PubMed  CAS  Google Scholar 

  58. Urban JPG, Holm S, Maroudas A (1978) Diffusion of small solutes into the intervertebral disc: an in vivo study. Biorheology 15:203–223

    PubMed  CAS  Google Scholar 

  59. Urban JP, Maroudas GA (1979) The measurement of fixed charge density in the intervertebral disc. Biochim Biophys Acta 586:166–178

    CAS  Google Scholar 

  60. Urban JPG, Smith S, Fairbank JCT (2004) Nutrition of the intervertebral disc. Spine 29:2700–2709

    Article  PubMed  Google Scholar 

  61. Urry DW (1991) Polynanopeptide bioelastomers having an increased elastic modulus, U.S. Patent 5,064,430

  62. Vernon-Roberts BC, Pirie J (1973) Healing trabecular microfractures in the bodies of lumbar vertebrae. Ann Rheum Dis. 32:406–412

    Article  PubMed  CAS  Google Scholar 

  63. Walkenhorst J, Kitchel S, Spenciner D (2004) Effect of injectable disc nucleus on function of human cadaver spine. In: 11th International meeting on advanced spine techniques (IMAST) Bermuda

  64. Wallace AL, Wyatt BC, McCarthy ID, Hughes SPF (1994) Humoral regulation of blood flow in the vertebral endplates. Spine 19:1324–1328

    Article  PubMed  CAS  Google Scholar 

  65. Whalen JL, Parke WW, Mazur JM, Stauffer ES (1985) The intrinsic vasculature of developing vertebral end plates and its nutritive significance to the intervertebral discs. J Pediatric Orthop 5:403–410

    CAS  Google Scholar 

  66. Yoon ST (2004) The potential for gene therapy for the treatment of disc degeneration. Orthop Clin North Am 35:95–100

    Article  PubMed  Google Scholar 

  67. Yorimitsu E, Chiba K, Toyama Y, Hirabayashi K (2001) Long-term outcomes of standard discectomy for lumbar disc herniation: a follow-up study of more than 10 years. Spine 26:652–657

    Article  PubMed  CAS  Google Scholar 

  68. Yuksel KU, Walsh SP, Black KS (2005) In situ bioprosthetic filler and methods, particularily for the in situ formation of vertebral disc bioprosthetics, U.S. Patent 6,921,412

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lawrence M. Boyd.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Boyd, L.M., Carter, A.J. Injectable biomaterials and vertebral endplate treatment for repair and regeneration of the intervertebral disc. Eur Spine J 15 (Suppl 3), 414–421 (2006). https://doi.org/10.1007/s00586-006-0172-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00586-006-0172-2

Keywords

Navigation