Skip to main content

Advertisement

Log in

Association between serum leptin and bone metabolic markers, and the development of heterotopic ossification of the spinal ligament in female patients with ossification of the posterior longitudinal ligament

  • Original Article
  • Published:
European Spine Journal Aims and scope Submit manuscript

Abstract

Obesity is a risk factor for ossification of the posterior longitudinal ligament (OPLL) of the spine, which is characterized by heterotopic bone formation in the posterior longitudinal spinal ligament. Hyperleptinemia is a common feature of obese people and leptin is believed to be an important factor in the pathogenesis of OPLL. However, the association between leptin and bone metabolism and the development of OPLL is not understood fully. The objective of the present study was to determine the association between serum leptin concentration and bone metabolic markers and the extent of heterotopic ossification of the spinal ligament in patients with OPLL. The serum concentrations of leptin, insulin, fructosamine, bone-specific alkaline phosphatase, and carboxyterminal propeptide of type I procollagen, urine deoxypyridinoline levels, and the number of vertebrae with OPLL involvement were measured in 125 (68 males and 57 females) patients with OPLL. The correlation between leptin and these other factors was then examined. Serum leptin and insulin concentrations were increased significantly in OPLL females compared to non-OPLL female controls. In the females with OPLL, serum leptin concentrations corrected for body mass index correlated positively with the number of vertebrae with OPLL involvement. In females, serum leptin levels were significantly higher in patients in whom OPLL extended to the thoracic and/or lumbar spine than in patients in whom OPLL was limited to the cervical spine. Our results suggest that hyperleptinemia, in combination with hyperinsulinemia, may contribute to the development of heterotopic ossification of the spinal ligament in female patients with OPLL.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Benomar Y, Roy AF, Aubourg A, Djiane J, Taouis M (2005) Cross down-regulation of leptin and insulin receptor expression and signaling in a human neuronal cell line. Biochem J 388:929–939

    Article  PubMed  CAS  Google Scholar 

  2. Burguera B, Hofbauer LC, Thomas T, Gori F, Evans GL, Khosla S, Riggs BL, Turner RT (2001) Leptin reduces ovariectomy-induced bone loss in rats. Endocrinology 142:3546–3553

    Article  PubMed  CAS  Google Scholar 

  3. Cornish J, Callon KE, Bava U, Lin C, Naot D, Hill BL, Grey AB, Broom N, Myers DE, Nicholson GC, Reid IR (2002) Leptin directly regulates bone cell function in vitro and reduces bone fragility in vivo. J Endocrinol 175:405–412

    Article  PubMed  CAS  Google Scholar 

  4. Ducy P, Amling M, Takeda S, Priemel M, Schilling AF, Beil FT, Shen J, Vinson C, Rueger JM, Karsenty G (2000) Leptin inhibits bone formation through a hypothalamic relay: a central control of bone mass. Cell 100:197–207

    Article  PubMed  CAS  Google Scholar 

  5. Elefteriou F, Takeda S, Ebihara K, Magre J, Patano N, Kim CA, Ogawa Y, Liu X, Ware SM, Craigen WJ, Robert JJ, Vinson C, Nakao K, Capeau J, Karsenty G (2004) Serum leptin level is a regulator of bone mass. Proc Nat Acad Sci 101:3258–3263

    Article  PubMed  CAS  Google Scholar 

  6. Fan D, Chen Z, Chen Y, Shang Y (2007) Mechanistic roles of leptin in osteogenic stimulation in thoracic ligament flavum cells. J Biol Chem 282:29958–29966

    Article  PubMed  CAS  Google Scholar 

  7. Fruhbeck G, Salvador J (2000) Relation between leptin and the regulation of glucose metabolism. Diabetologia 43:3–12

    Article  PubMed  CAS  Google Scholar 

  8. Goto K, Yamazaki M, Tagawa M, Goto S, Kon T, Moriya H, Fujimura S (1998) Involvement of insulin growth factor I in development of ossification of the posterior longitudinal ligament of the spine. Calcif Tissue Int 62:158–165

    Article  PubMed  CAS  Google Scholar 

  9. Hegyi K, Fulop K, Kavacs K, Toth S, Falus A (2004) Leptin-induced signal transduction pathways. Cell Biol Int 28:159–169

    Article  PubMed  CAS  Google Scholar 

  10. Iida M, Murakami T, Ishida K, Mizuno A, Kuwajima M, Shima K (1996) Substitution at codon 269 (glutamine-proline) of the leptin receptor (OB-R) cDNA is the only mutation found in the Zucker fatty (fa/fa) rat. Biochem Biophys Res Commun 224:597–604

    Article  PubMed  CAS  Google Scholar 

  11. Iwasawa T, Iwasaki K, Sawada T, Okada A, Ueyama K, Motomura S, Harata S, Toh S, Furukawa KI (2006) Pathophysiological role of endothelin in ectopic ossification of human spinal ligaments induced by mechanical stress. Calcif Tissue Int 79:422–430

    Article  PubMed  CAS  Google Scholar 

  12. Kadowaki T, Tobe K, Honda-Yamamoto R, Tamemoto H, Kaburagi Y, Momomura K, Ueki K, Takahashi Y, Yamauchi T, Akanuma Y, Yazaki Y (1996) Signal transduction mechanism of insulin and insulin-like growth factor-1. Endocr J 43(Suppl):S33–S41

    Article  PubMed  CAS  Google Scholar 

  13. Kawai K (1989) Ossification of the insertion of the spinal ligament (Enthesis) in Zucker fatty rats and the effects of ethane-1-hydroxy-1, 1-diphosphonate (EHDP) on its rat. J Tokyo Med Coll 47:558–567 (in Japanese)

    CAS  Google Scholar 

  14. Kennedy A, Gettys TW, Watson P, Wallace P, Ganaway E, Pan Q, Garvey WT (1997) The metabolic significance of leptin in humans: gender-based differences in relationship to adiposity, insulin sensitivity, and energy expenditure. J Clin Endocrinol Metab 82:1293–1300

    Article  PubMed  CAS  Google Scholar 

  15. Li H, Liu D, Zhao CQ, Jiang LS, Dai LY (2008) Insulin potentiates the proliferation and bone morphogenetic protein-2-induced osteogenic differentiation of rat spinal ligament cells via extracellular signal-regulated kinase and phosphatidylinositol 3-kinase. Spine 33:2349–2402

    Google Scholar 

  16. Liang L, Yu JF, Wang Y, Wang G, Ding Y (2008) Effect of estrogen beta on the osteoblastic differentiation function of human periodontal ligament cells. Arch Oral Biol 53:553–557

    Article  PubMed  CAS  Google Scholar 

  17. Maffei M, Halaas J, Ravussin E, Pratley RE, Lee GH, Zhang Y, Fei H, Kim S, Lallone R, Ranganathan S (1995) Leptin levels in human and rodent: measurement of plasma leptin and ob RNA in obese and weight-reduced subjects. Nature Med 1:1155–1161

    Article  PubMed  CAS  Google Scholar 

  18. Nakamura H (1994) A radiographic study of the progression of ossification of the cervical posterior longitudinal ligament and that of the anterior longitudinal ligament. Nippon Seikeigeka Gakkai Zasshi 68:725–730 (in Japanese)

    PubMed  CAS  Google Scholar 

  19. Niswender KD, Schwartz MW (2003) Insulin and leptin revisited: adiposity signals with overlapping physiological and intracellular signaling capabilities. Front Neuroendocrinol 24:1–10

    Article  PubMed  CAS  Google Scholar 

  20. Okano T, Ishidou Y, Kato M, Imamura T, Yonemori K, Origuchi N, Matsunaga S, Yoshida H, ten Dijke P, Sakou T (1997) Orthotopic ossification of the spinal ligaments of Zucker fatty rats: a possible animal model for ossification of the human posterior longitudinal ligament. J Orthop Res 15:820–829

    Article  PubMed  CAS  Google Scholar 

  21. Phillips MS, Liu Q, Hammond HA, Dugan V, Hey PJ, Caskey CJ, Hess JF (1996) Leptin receptor missense mutation in the fatty Zucker rat. Nature Genet 13:18–19

    Article  PubMed  CAS  Google Scholar 

  22. Reseland J, Gordeladze J (2002) Role of leptin in bone growth: central player or peripheral supporter? FEBS Lett 528:40–42

    Article  PubMed  CAS  Google Scholar 

  23. Rosenbaum M, Nicolson M, Hirsch J, Murphy E, Chu F, Leibel RL (1996) Effects of gender, body composition, and menopause on plasma concentrations of leptin. J Clin Endocriol Metab 81:3424–3427

    Article  CAS  Google Scholar 

  24. Shirakura Y, Sugiyama T, Tanaka H, Taguchi T, Kawai S (2000) Hyperleptinemia in female patients with ossification of spinal ligaments. Biochem Biophys Res Commun 267:752–755

    Article  PubMed  CAS  Google Scholar 

  25. Shu L, Guan SM, Fu SM, Guo T, Cao M, Ding Y (2008) Estrogen modulates cytokine expression in human periodontal ligament cells. J Dent Res 87:142–147

    Article  PubMed  CAS  Google Scholar 

  26. Steppan CM, Crawford DT, Chidsey Frink KL, Ke H, Swick AG (2000) Leptin is a potent stimulator of bone growth in ob/ob mice. Regul Pept 92:73–78

    Article  PubMed  CAS  Google Scholar 

  27. Takatsu T, Ishida Y, Suzuki K, Inoue H (1999) Radiological study of cervical ossification of the posterior longitudinal ligament. J Spinal Disord 12:271–273

    PubMed  CAS  Google Scholar 

  28. Takaya K, Ogawa Y, Isse N, Okazaki T, Satoh N, Masuzaki H, Mori K, Tamura N, Hosoda K, Nakao K (1996) Molecular cloning of rat leptin receptor isoform complementary DNAs: identification of a missense mutation in Zucker fatty (fa/fa) rats. Biochem Biophys Res Commun 225:75–83

    Article  PubMed  CAS  Google Scholar 

  29. Tahara M, Aiba A, Yamazaki M, Ikeda Y, Goto S, Moriya H, Okawa A (2005) The extent of ossification of posterior longitudinal ligament of the spine associated with nucleotide pyrophosphate gene and leptin receptor gene polymorphisms. Spine 30:877–880

    Article  PubMed  Google Scholar 

  30. Tanaka S (1994) Ossification of the spinal ligaments in Zucker fatty rat. J Tokyo Med Coll 52:19–32 (in Japanese)

    Google Scholar 

  31. Tasaka Y, Yanagisawa Y, Iwamoto Y (1997) Human plasma leptin in obese subjects and diabetics. Endocr J 44:671–676

    Article  PubMed  CAS  Google Scholar 

  32. Thomas T, Gori F, Khosla S, Jensen MD, Burguera B, Riggs BL (1999) Leptin acts on human marrow stromal cells to enhance differentiation to osteoblasts and to inhibit differentiation to adipocytes. Endocrinology 140:1630–1638

    Article  PubMed  CAS  Google Scholar 

  33. Tsuyama N (1984) Ossification of the posterior longitudinal ligament of the spine. Clin Orthop Relat Res 184:71–84

    PubMed  Google Scholar 

  34. Wada A (1995) Affinity of estrogen binding in the cultured spinal ligament cells: an in vitro study using cells from spinal ligament ossification patients. Nippon Seikeigeka Gakkai Zasshi 69:440–449 (in Japanese)

    PubMed  CAS  Google Scholar 

  35. White AA, Panjabi MM (1990) Clinical biomechanics of the spine, 2nd edn. Lippincott-Raven, Philladelphia

    Google Scholar 

  36. Yamashita T, Murakami T, Iida M, Kuwajima M, Shima K (1997) Leptin receptor of Zucker fatty rat performs reduced signal transduction. Diabetes 46:1077–1080

    Article  PubMed  CAS  Google Scholar 

  37. Zhang Y, Proenca R, Maffei M, Barone M, Leopold L, Friedman JM (1994) Positional cloning of the mouse obese gene and its human homologue. Nature 372:425–432

    Article  PubMed  CAS  Google Scholar 

  38. Zhou Y, Fu Y, Li JP, Qi LY (2009) The role of estrogen in osteogenic cytokine expression in human periodontal ligament cells. Int J Periodontics Restorative Dent 29:507–513

    PubMed  Google Scholar 

  39. Zucker LM, Antoniades HN (1972) Insulin and obesity in the Zucker genetically obese rat “fatty”. Endocrinology 90:1320–1330

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This study was supported by a Grant-in-Aid for Scientific Research from the Ministry of Education, Science and Culture of Japan, and by a grant for Intractable Diseases from the Public Health Bureau, the Ministry of Health and Welfare of Japan (Investigation Committee on Ossification of the Spinal Ligaments).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Masashi Yamazaki.

Additional information

Y. Ikeda and A. Nakajima contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ikeda, Y., Nakajima, A., Aiba, A. et al. Association between serum leptin and bone metabolic markers, and the development of heterotopic ossification of the spinal ligament in female patients with ossification of the posterior longitudinal ligament. Eur Spine J 20, 1450–1458 (2011). https://doi.org/10.1007/s00586-011-1688-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00586-011-1688-7

Keywords

Navigation