Skip to main content

Advertisement

Log in

The role of serum osteoprotegerin and receptor–activator of nuclear factor-κB ligand in metabolic bone disease of women after obesity surgery

  • Original Article
  • Published:
Journal of Bone and Mineral Metabolism Aims and scope Submit manuscript

Abstract

Metabolic bone disease may appear as a complication of obesity surgery. Because an imbalance in the osteoprotegerin and receptor–activator of nuclear factor-κB ligand system may underlie osteoporosis, we aimed to study this system in humans in the metabolic bone disease occurring after obesity surgery. In this study we included sixty women with a mean age of 47 ± 10 years studied 7 ± 2 years after bariatric surgery. The variables studied were bone mineral density, β-isomer of C-terminal telopeptide of type I collagen cross-links (a bone resorption marker), the bone formation markers osteocalcin and N-terminal propeptide of procollagen 1, serum osteoprotegerin and receptor–activator of nuclear factor-κB ligand. Serum osteoprotegerin inversely correlated with the bone remodeling markers osteocalcin, β-isomer of C-terminal telopeptide of type I collagen cross-links and N-terminal propeptide of procollagen 1. The osteoprotegerin and receptor–activator of nuclear factor-κB ligand ratio also correlated inversely with serum parathormone and osteocalcin. Bone mineral density at the lumbar spine was associated with age (β = −0.235, P = 0.046), percentage of weight loss (β = 0.421, P = 0.001) and osteoprotegerin and receptor–activator of nuclear factor-κB ligand ratio (β = 0.259, P = 0.029) in stepwise multivariate analysis (R 2 = 0.29, F = 7.49, P < 0.001). Bone mineral density at the hip site was associated only with percentage of weight loss (β = 0.464, P < 0.001) in stepwise multivariate regression (R 2 = 0.21, F = 15.1, P < 0.001). These data show that the osteoprotegerin and receptor–activator of nuclear factor-κB ligand system is associated with bone markers and bone mineral density at the lumbar spine after obesity surgery.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Finucane MM, Stevens GA, Cowan MJ, Danaei G, Lin JK, Paciorek CJ, Singh GM, Gutierrez HR, Lu Y, Bahalim AN, Farzadfar F, Riley LM, Ezzati M (2011) National, regional, and global trends in body-mass index since 1980: systematic analysis of health examination surveys and epidemiological studies with 960 country–years and 9.1 million participants. Lancet 377:557–567

    Article  PubMed  PubMed Central  Google Scholar 

  2. Berrington de Gonzalez A, Hartge P, Cerhan JR, Flint AJ, Hannan L et al (2010) Body-mass index and mortality among 1.46 million white adults. N Engl J Med 363:2211–2219

    Article  CAS  PubMed  Google Scholar 

  3. Buchwald H, Oien DM (2011) Metabolic/bariatric surgery worldwide. Obes Surg 23:427–436

    Article  Google Scholar 

  4. Mechanick JI, Youdim A, Jones DB, Garvey WT, Hurley DL, McMahon MM, Heinberg LJ, Kushner R, Adams TD, Shikora S, Dixon JB, Brethauer S (2013) Clinical practice guidelines for the perioperative nutritional, metabolic, and nonsurgical support of the bariatric surgery patient–2013 update: cosponsored by American Association of Clinical Endocrinologists, The Obesity Society, and American Society for Metabolic and Bariatric Surgery. Obesity (Silver Spring) 21(Suppl 1):S1–S27

    Article  CAS  Google Scholar 

  5. Yip S, Plank LD, Murphy R (2013) Gastric bypass and sleeve gastrectomy for type 2 diabetes: a systematic review and meta-analysis of outcomes. Obes Surg 23:1994–2003

    Article  PubMed  Google Scholar 

  6. Escobar-Morreale HF, Botella-Carretero JI, Alvarez-Blasco F, Sancho J, San Millan JL (2005) The polycystic ovary syndrome associated with morbid obesity may resolve after weight loss induced by bariatric surgery. J Clin Endocrinol Metab 90:6364–6369

    Article  CAS  PubMed  Google Scholar 

  7. Botella-Carretero JI, Balsa JA, Gomez-Martin JM, Peromingo R, Huerta L, Carrasco M, Arrieta F, Zamarron I, Martin-Hidalgo A, Vazquez C (2013) Circulating free testosterone in obese men after bariatric surgery increases in parallel with insulin sensitivity. J Endocrinol Invest 36:227–232

    CAS  PubMed  Google Scholar 

  8. Balsa JA, Botella-Carretero JI, Peromingo R, Zamarron I, Arrieta F, Munoz-Malo T, Vazquez C (2008) Role of calcium malabsorption in the development of secondary hyperparathyroidism after biliopancreatic diversion. J Endocrinol Invest 31:845–850

    Article  CAS  PubMed  Google Scholar 

  9. Balsa JA, Botella-Carretero JI, Peromingo R, Caballero C, Munoz-Malo T, Villafruela JJ, Arrieta F, Zamarron I, Vazquez C (2010) Chronic increase of bone turnover markers after biliopancreatic diversion is related to secondary hyperparathyroidism and weight loss. Relation with bone mineral density. Obes Surg 20:468–473

    Article  PubMed  Google Scholar 

  10. Balsa JA, Botella-Carretero JI, Gomez-Martin JM, Peromingo R, Arrieta F, Santiuste C, Zamarron I, Vazquez C (2011) Copper and zinc serum levels after derivative bariatric surgery: differences between Roux-en-Y gastric bypass and biliopancreatic diversion. Obes Surg 21:744–750

    Article  PubMed  Google Scholar 

  11. Coates PS, Fernstrom JD, Fernstrom MH, Schauer PR, Greenspan SL (2004) Gastric bypass surgery for morbid obesity leads to an increase in bone turnover and a decrease in bone mass. J Clin Endocrinol Metab 89:1061–1065

    Article  CAS  PubMed  Google Scholar 

  12. Fleischer J, Stein EM, Bessler M, Della Badia M, Restuccia N, Olivero-Rivera L, McMahon DJ, Silverberg SJ (2008) The decline in hip bone density after gastric bypass surgery is associated with extent of weight loss. J Clin Endocrinol Metab 93:3735–3740

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Moreiro J, Ruiz O, Perez G, Salinas R, Urgeles JR, Riesco M, Garcia-Sanz M (2007) Parathyroid hormone and bone marker levels in patients with morbid obesity before and after biliopancreatic diversion. Obes Surg 17:348–354

    Article  CAS  PubMed  Google Scholar 

  14. Simonet WS, Lacey DL, Dunstan CR, Kelley M, Chang MS et al (1997) Osteoprotegerin: a novel secreted protein involved in the regulation of bone density. Cell 89:309–319

    Article  CAS  PubMed  Google Scholar 

  15. Tsuda E, Goto M, Mochizuki S, Yano K, Kobayashi F, Morinaga T, Higashio K (1997) Isolation of a novel cytokine from human fibroblasts that specifically inhibits osteoclastogenesis. Biochem Biophys Res Commun 234:137–142

    Article  CAS  PubMed  Google Scholar 

  16. Yasuda H, Shima N, Nakagawa N, Yamaguchi K, Kinosaki M, Mochizuki S, Tomoyasu A, Yano K, Goto M, Murakami A, Tsuda E, Morinaga T, Higashio K, Udagawa N, Takahashi N, Suda T (1998) Osteoclast differentiation factor is a ligand for osteoprotegerin/osteoclastogenesis-inhibitory factor and is identical to TRANCE/RANKL. Proc Natl Acad Sci USA 95:3597–3602

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Kearns AE, Khosla S, Kostenuik PJ (2008) Receptor activator of nuclear factor kappaB ligand and osteoprotegerin regulation of bone remodeling in health and disease. Endocr Rev 29:155–192

    Article  CAS  PubMed  Google Scholar 

  18. Findlay DM, Atkins GJ (2011) Relationship between serum RANKL and RANKL in bone. Osteoporos Int 22:2597–2602

    Article  CAS  PubMed  Google Scholar 

  19. Lyritis GP, Georgoulas T, Zafeiris CP (2010) Bone anabolic versus bone anticatabolic treatment of postmenopausal osteoporosis. Ann N Y Acad Sci 1205:277–283

    Article  CAS  PubMed  Google Scholar 

  20. Jules J, Ashley JW, Feng X (2010) Selective targeting of RANK signaling pathways as new therapeutic strategies for osteoporosis. Expert Opin Ther Targets 14:923–934

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Perez-Castrillon JL, Riancho JA, de Luis D, Gonzalez-Sagrado M, Ruiz-Mambrilla M, Domingo-Andres M, Conde R, Primo D, Duenas-Laita A (2014) Effect of two types of bariatric surgery (gastrojejunal bypass and sleeve gastroplasty) on gene expression of bone remodeling markers in goto-kakizaki rats. Obes Surg 24:37–41

    Article  PubMed  Google Scholar 

  22. Rogers A, Eastell R (2005) Circulating osteoprotegerin and receptor activator for nuclear factor kappaB ligand: clinical utility in metabolic bone disease assessment. J Clin Endocrinol Metab 90:6323–6331

    Article  CAS  PubMed  Google Scholar 

  23. Boyce BF, Rosenberg E, de Papp AE, le Duong T (2012) The osteoclast, bone remodelling and treatment of metabolic bone disease. Eur J Clin Invest 42:1332–1341

    Article  CAS  PubMed  Google Scholar 

  24. Indridason OS, Franzson L, Sigurdsson G (2005) Serum osteoprotegerin and its relationship with bone mineral density and markers of bone turnover. Osteoporos Int 16:417–423

    Article  CAS  PubMed  Google Scholar 

  25. Rogers A, Saleh G, Hannon RA, Greenfield D, Eastell R (2002) Circulating estradiol and osteoprotegerin as determinants of bone turnover and bone density in postmenopausal women. J Clin Endocrinol Metab 87:4470–4475

    Article  CAS  PubMed  Google Scholar 

  26. Nieves JW (2005) Osteoporosis: the role of micronutrients. Am J Clin Nutr 81:1232S–1239S

    CAS  PubMed  Google Scholar 

  27. Shapses SA, Riedt CS (2006) Bone, body weight, and weight reduction: what are the concerns? J Nutr 136:1453–1456

    CAS  PubMed  PubMed Central  Google Scholar 

  28. Anastasilakis AD, Goulis DG, Polyzos SA, Gerou S, Koukoulis G, Kita M (2008) Serum osteoprotegerin and RANKL are not specifically altered in women with postmenopausal osteoporosis treated with teriparatide or risedronate: a randomized, controlled trial. Horm Metab Res 40:281–285

    Article  CAS  PubMed  Google Scholar 

  29. Fernandez-Garcia D, Munoz-Torres M, Mezquita-Raya P, de la Higuera M, Alonso G, Reyes-Garcia R, Ochoa AS, Ruiz-Requena ME, Luna JD, Escobar-Jimenez F (2008) Effects of raloxifene therapy on circulating osteoprotegerin and RANK ligand levels in post-menopausal osteoporosis. J Endocrinol Invest 31:416–421

    Article  CAS  PubMed  Google Scholar 

  30. Jabbar S, Drury J, Fordham JN, Datta HK, Francis RM, Tuck SP (2011) Osteoprotegerin, RANKL and bone turnover in postmenopausal osteoporosis. J Clin Pathol 64:354–357

    Article  CAS  PubMed  Google Scholar 

  31. Mezquita-Raya P, de la Higuera M, Garcia DF, Alonso G, Ruiz-Requena ME, de Dios Luna J, Escobar-Jimenez F, Munoz-Torres M (2005) The contribution of serum osteoprotegerin to bone mass and vertebral fractures in postmenopausal women. Osteoporos Int 16:1368–1374

    Article  PubMed  Google Scholar 

  32. Eghbali-Fatourechi G, Khosla S, Sanyal A, Boyle WJ, Lacey DL, Riggs BL (2003) Role of RANK ligand in mediating increased bone resorption in early postmenopausal women. J Clin Invest 111:1221–1230

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Bae YJ, Kim MH (2010) Calcium and magnesium supplementation improves serum OPG/RANKL in calcium-deficient ovariectomized rats. Calc Tissue Int 87:365–372

    Article  CAS  Google Scholar 

  34. Boyce BF, Xing L (2008) Functions of RANKL/RANK/OPG in bone modeling and remodeling. Arch Biochem Biophys 473:139–146

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Silva BC, Bilezikian JP (2015) Parathyroid hormone: anabolic and catabolic actions on the skeleton. Curr Opin Pharmacol 22:41–50

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We thank the nursing staff of the Department of Endocrinology and Nutrition for their help with the anthropometric and blood sampling of the patients. This work was supported by the Fundación para la Investigación Biomédica del Hospital Universitario Ramón y Cajal (FIBio-HRC 119/08).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to José I. Botella-Carretero.

Ethics declarations

Conflict of interest

José A. Balsa, Christian Lafuente, Jesús M. Gómez-Martín, Julio Galindo, Roberto Peromingo, Francisca García-Moreno, Gloria Rodriguez-Velasco, Javier Martínez-Botas, Diego Gómez-Coronado, Héctor F. Escobar-Morreale declare no conflict of interest. José I. Botella-Carretero, the corresponding Author and Principal Investigator of this study, also declares no conflict of interest.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Balsa, J.A., Lafuente, C., Gómez-Martín, J.M. et al. The role of serum osteoprotegerin and receptor–activator of nuclear factor-κB ligand in metabolic bone disease of women after obesity surgery. J Bone Miner Metab 34, 655–661 (2016). https://doi.org/10.1007/s00774-015-0712-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00774-015-0712-0

Keywords

Navigation