Skip to main content

Role of intra-abdominal pressure in the unloading and stabilization of the human spine during static lifting tasks

Abstract

The role of intra-abdominal pressure (IAP) in unloading the spine has remained controversial. In the current study, a novel kinematics-based approach along with a nonlinear finite-element model were iteratively used to calculate muscle forces, spinal loads, and stability margin under prescribed postures and loads measured in in vivo studies. Four coactivity levels (none, low, moderate, and high) of abdominal muscles (rectus abdominis, external oblique, and internal oblique) were considered concurrently with a raise in IAP from 0 to 4 kPa when lifting a load of 180 N in upright standing posture and to 9 kPa when lifting the same load in forward trunk flexions of 40° and 65°. For comparison, reference cases with neither abdominal coactivity nor IAP were investigated as well. A raise in IAP unloaded and stabilized the spine when no coactivity was considered in the foregoing abdominal muscles for all lifting tasks regardless of the posture considered. In the upright standing posture, the unloading action of IAP faded away even in the presence of low level of abdominal coactivity while its stabilizing action continued to improve as abdominal coactivity increased to moderate and high levels. For lifting in forward-flexed postures, the unloading action of IAP disappeared only with high level of abdominal coactivities while its stabilizing action deteriorated as abdominal coactivities increased. The unloading and stabilizing actions of IAP, hence, appear to be posture and task specific.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

References

  1. Andersson GB, Ortengren R, Nachemson A (1976) Quantitative studies of back loads in lifting. Spine 1:178–185

    Article  Google Scholar 

  2. Andersson GB, Ortengren R, Nachemson A (1977) Intradiskal pressure, intra-abdominal pressure and myoelectric back muscle activity related to posture and loading. Clin Orthop Relat Res 129:156–164

    PubMed  Google Scholar 

  3. Arjmand N, Shirazi-Adl A (2005) Model and in vivo studies on human trunk load partitioning and stability in isometric forward flexions. J Biomech (in press)

  4. Arjmand N, Shirazi-Adl A, Parnianpour M (2001) A finite element model study on the role of trunk muscles in generating intra-abdominal pressure. Biomed Eng Appl Basis Commun 13(4):23–31

    Google Scholar 

  5. Bartelink DL (1957) The role of abdominal pressure in relieving the pressure on the lumbar intervertebral discs. J Bone Joint Surg Br 39:718–725

    PubMed  Google Scholar 

  6. Bergmark A (1989) Stability of the lumbar spine—a study in mechanical engineering. Acta Orthop Scand Suppl 230:1–54

    PubMed  CAS  Google Scholar 

  7. Bogduk N, Johnson G, Spalding D (1998) The morphology and biomechanics of latissimus dorsi. Clin Biomech 13(6):377–385

    Article  Google Scholar 

  8. Bogduk N, Macintosh JE, Pearcy MJ (1992) A universal model of the lumbar back muscles in the upright position. Spine 17:897–913

    PubMed  Article  CAS  Google Scholar 

  9. Chaffin DB (1969) Computerized biomechanical models-development of and use in studying gross body actions. J Biomech 2:429–441

    Article  PubMed  CAS  Google Scholar 

  10. Chen WJ, Chiou WK, Lee YH, Lee MY, Chen ML (1998) Myo-electric behavior of the trunk muscles during static load holding in healthy subjects and low back pain patients. Clin Biomech 13(1 Suppl 1):S9–S15

    Article  Google Scholar 

  11. Cholewicki J, Ivancic PC, Radebold A (2002) Can increased intra-abdominal pressure in humans be decoupled from trunk muscle co-contraction during steady state isometric exertions? Eur J Appl Physiol 87(2):127–133

    Article  PubMed  Google Scholar 

  12. Cholewicki J, Juluru K, McGill SM (1999a) Intra-abdominal pressure mechanism for stabilizing the lumbar spine. J Biomech 32(1):13–17

    Article  CAS  Google Scholar 

  13. Cholewicki J, Juluru K, Radebold A, Panjabi MM, McGill SM (1999b) Lumbar spine stability can be augmented with an abdominal belt and/or increased intra-abdominal pressure. Eur Spine J 8:388–395

    Article  CAS  Google Scholar 

  14. Cholewicki J, Reeves NP (2004) All abdominal muscles must be considered when evaluating the intra-abdominal pressure contribution to trunk extensor moment and spinal loading. J Biomech 37:953–954

    Article  PubMed  Google Scholar 

  15. Cresswell AG (1993) Responses of intra-abdominal pressure and abdominal muscle activity during dynamic trunk loading in man. Eur J Appl Physiol 66(4):315–320

    Article  CAS  Google Scholar 

  16. Cresswell AG, Grundstrom H, Thorstensson A (1992) Observations on intra-abdominal pressure and patterns of abdominal intra-muscular activity in man. Acta Physiol Scand 144(4):409–418

    PubMed  CAS  Google Scholar 

  17. Cresswell AG, Thorstensson A (1989) The role of the abdominal musculature in the elevation of the intra-abdominal pressure during specified tasks. Ergonomics 32:1237–1246

    PubMed  Article  CAS  Google Scholar 

  18. Crisco JJ III, Panjabi MM (1991) The intersegmental and multisegmental muscles of the lumbar spine—a biomechanical model comparing lateral stabilizing potential. Spine 16:793–799

    PubMed  Article  Google Scholar 

  19. Cyron BM, Hutton WC, Stott JRR (1975) The mechanical properties of the lumbar spine. Mech Eng 8(2):63–68

    Article  Google Scholar 

  20. Daggfeldt K, Thorstensson A (1997) The role of intra-abdominal pressure in spinal unloading. J Biomech 30:1149–1155

    Article  PubMed  CAS  Google Scholar 

  21. Daggfeldt K, Thorstensson A (2003) The mechanics of back-extensor torque production about the lumbar spine. J Biomech 36:815–825

    Article  PubMed  Google Scholar 

  22. Daggfeldt K, Thorstensson A (2004) Author’s response to: “All abdominal muscles must be considered when evaluating the intra-abdominal pressure contribution to trunk extensor moment and spinal loading”. J Biomech 37:955–956

    Article  Google Scholar 

  23. Damkot DK, Pope MH, Lord J, Frymoyer JW (1984) The relationship between work history, work environment and low-back pain in men. Spine 9(4):395–399

    PubMed  Article  CAS  Google Scholar 

  24. Davis PR (1956) Variations of the human intra-abdominal pressure during weightlifting in different postures. J Anat 90:601

    Google Scholar 

  25. Davis J, Kaufman KR, Lieber RL (2003) Correlation between active and passive isometric force and intramuscular pressure in the isolated rabbit tibialis anterior muscle. J Biomech 36:505–512

    Article  PubMed  Google Scholar 

  26. Davis JR, Mirka GA (2000) Transverse-contour modeling of trunk muscle-distributed forces and spinal loads during lifting and twisting. Spine 25(2):180–189

    Article  PubMed  CAS  Google Scholar 

  27. Davis PR, Troup JDG (1964) Pressures in the trunk cavities when pulling, pushing and lifting. Ergonomics 7:465–474

    Article  Google Scholar 

  28. De Looze MP, Groen H, Horemans H, Kingma I, van Dieen JH (1999) Abdominal muscles contribute in a minor way to peak spinal compression in lifting. J Biomech 32(7):655–662

    Article  PubMed  Google Scholar 

  29. Dvorak J, Panjabi MM, Chang DG, Theiler R, Grob D (1991) Functional radiographic diagnosis of the lumbar spine flexion–extension and lateral bending. Spine 16 (5):562–571

    Google Scholar 

  30. El-Rich M, Shirazi-Adl A, Arjmand N (2004) Muscle activity, internal loads and stability of the human spine in standing postures: combined model-in vivo studies. Spine 29:2633–2642

    Article  PubMed  Google Scholar 

  31. Essendrop M, Schibye B (2004) Intra-abdominal pressure and activation of abdominal muscles in highly trained participants during sudden heavy trunk loadings. Spine 29(21):2445–2451

    Article  PubMed  Google Scholar 

  32. Essendrop M, Schibye B, Hye-Knudsen C (2002) Intra-abdominal pressure increases during exhausting back extension in humans. Eur J Appl Physiol 87(2):167–173

    Article  PubMed  CAS  Google Scholar 

  33. Farfan HF (1973) Mechanical disorders of low back. Lea and Febiger, Philadelphia, pp 182–189

    Google Scholar 

  34. Hagins M, Pietrek M, Sheikhzadeh A, Nordin M, Axen K (2004) The effects of breath control on intra-abdominal pressure during lifting tasks. Spine 29(4):464–469

    Article  PubMed  Google Scholar 

  35. Harman EA, Frykman PN, Clagett ER, Kraemer WJ (1988) Intra-abdominal and intra-thoracic pressures during lifting and jumping. Med Sci Sports Exerc 20(2):195–201

    PubMed  CAS  Article  Google Scholar 

  36. Harman EA, Rosenstein RM, Frykman PN, Nigro GA (1989) Effects of a belt on intra-abdominal pressure during weight lifting. Med Sci Sports Exerc 21(2):186–190

    PubMed  CAS  Google Scholar 

  37. Hodges PW, Cresswell AG, Daggfeldt K, Thorstensson A (2001) In vivo measurement of the effect of intra-abdominal pressure on the human spine. J Biomech 34:347–353

    Article  PubMed  CAS  Google Scholar 

  38. Hodges PW, Gandevia SC (2000) Changes in intra-abdominal pressure during postural and respiratory activation of the human diaphragm. J Appl Physiol 89(3):967–976

    PubMed  CAS  Google Scholar 

  39. Hoogendoorn WE, Bongers PM, de Vet HC, Douwes M, Koes BW, Miedema MC, Ariens GA, Bouter LM (2000) Flexion and rotation of the trunk and lifting at work are risk factors for low back pain: results of a prospective cohort study. Spine 25:3087–3092

    Article  PubMed  CAS  Google Scholar 

  40. Hughes RE, Chaffin DB, Lavender SA, Andersson GBJ (1994) Evaluation of muscle force prediction models of the lumbar trunk using surface electromyography. J Orthop Res 12:689–698

    Article  PubMed  CAS  Google Scholar 

  41. Keith A (1923) Man’s posture: its evolution and disorders. Brit Med J 1:587–590

    Article  Google Scholar 

  42. Krag MH, Byrne KB, Gilbertson LG, Haugh LD (1986) Failure of intra-abdominal pressurization to reduce erector spinae loads during lifting tasks. In: Proceedings of the 10th annual congress of the North American Society of Biomechanics, Montreal, Canada

  43. Lander JE, Hundley JR, Simonton RL (1992) The effectiveness of weight-belts during multiple repetitions of the squat exercise. Med Sci Sports Exerc 24(5):603–609

    PubMed  CAS  Google Scholar 

  44. Mairiaux P, Malchaire J, Vandiepenbeeck D, Bellelahom L (1988) Reproducibility of intra-abdominal pressure when lifting. Scand J Rehabil Med 20(2):83–88

    PubMed  CAS  Google Scholar 

  45. Marras WS, King AI, Joynt RL (1984) Measurements of loads on the lumbar spine under isometric and isokinetic conditions. Spine 9:176–188

    PubMed  Article  CAS  Google Scholar 

  46. Marras WS, Mirka GA (1996) Intra-abdominal pressure during trunk extension motions. Clin Biomech 11:267–274

    Article  Google Scholar 

  47. McGill SM (1996) A revised anatomical model of the abdominal musculature for torso flexion efforts. J Biomech 29(7):973–977

    Article  PubMed  CAS  Google Scholar 

  48. McGill SM, Norman RW (1986) Partitioning of the L4L5 dynamic moment into disc, ligaments and muscular components during lifting. Spine 11:666–678

    PubMed  Article  CAS  Google Scholar 

  49. McGill SM, Norman RW (1987) Reassessment of the role of intra-abdominal pressure in spinal compression. Ergonomics 30:1565–1588

    PubMed  Article  CAS  Google Scholar 

  50. McGill SM, Norman RW (1988) Potential of lumbodorsal fascia forces to generate back extension moments during squat lifts. J Biomed Eng 10(4):312–318

    PubMed  Article  CAS  Google Scholar 

  51. McGill SM, Norman RW (1993) Low back biomechanics in industry: The prevention of injury through safer lifting. In: Grabiner MD (ed) Current issues in biomechanics. Human Kinetics, Champaign, pp 69–120

    Google Scholar 

  52. McGill SM, Norman RW, Sharratt MT (1990) The effect of an abdominal belt on trunk uscle activity and intra-abdominal pressure during squat lifts. Ergonomics 33:147–60

    PubMed  Article  CAS  Google Scholar 

  53. Mueller G, Morlock MM, Vollmer M, Honl M, Hille E, Schneider E (1998) Intramuscular pressure in the erector spinae and intra-abdominal pressure related to posture and load. Spine 23(23):2580–2590

    Article  PubMed  CAS  Google Scholar 

  54. Morris JM, Lucas DM, Bresler B (1961) Role of the trunk in stability of the spine. J Bone Joint Surg Am 43:327–351

    Google Scholar 

  55. Nachemson AL, Andersson GBJ, Schultz AB (1986) Valsalva maneuver biomechanics Effects on lumbar trunk loads of elevated intraabdominal pressures. Spine 11:476–479

    PubMed  Article  CAS  Google Scholar 

  56. Ng JKF, Kippers V, Richardson CA (1998) Muscle fibre orientation of abdominal muscles and suggested surface EMG electrode positions. Electromyogr Clin Neurophysiol 38:51–58

    PubMed  CAS  Google Scholar 

  57. Ng JK, Kippers V, Parnianpour M, Richardson CA (2002) EMG activity normalization for trunk muscles in subjects with and without back pain. Med Sci Sports Exerc 34(7):1082–1086

    Article  PubMed  Google Scholar 

  58. Nussbaum MA, Chaffin DB (1996) Development and evaluation of a scalable and deformable geometric model of the human torso. Clin Biomech 11(1):25–34

    Article  Google Scholar 

  59. Oxland T, Lin RM, Panjabi M (1992) Three-dimensional mechanical properties of the thoracolumbar junction. J Orthop Res 10:573–580

    Article  PubMed  CAS  Google Scholar 

  60. Patwardhan AG, Havey RM, Carandang G, Simonds J, Voronov LI, Ghanayem AJ, Meade KP, Gavin TM, Paxinos O (2003) Effect of compressive follower preload on the flexion–extension response of the human lumbar spine. J Orthop Res 21(3):540–546

    Article  PubMed  Google Scholar 

  61. Pearcy M, Portek I, Shepherd J (1984) Three-dimensional x-ray analysis of normal movement in the lumbar spine. Spine 9(3):294–297

    PubMed  Article  CAS  Google Scholar 

  62. Pearsall DJ (1994) Segmental inertial properties of the human trunk as determined from computer tomography and magnetic resonance imagery. PhD Thesis, Queen’s University

  63. Plamondon A, Gagnon M, Maurais G (1988) Application of a stereoradiographic method for the study of intervertebral motion. Spine 13(9):1027–1032

    PubMed  Article  CAS  Google Scholar 

  64. Potvin JR, McGill SM, Norman RW (1991) Trunk muscle and lumbar ligament contributions to dynamic lifts with varying degrees of trunk flexion. Spine 16:1099–1107

    PubMed  Article  CAS  Google Scholar 

  65. Raikova RT, Prilutsky BI (2001) Sensitivity of predicted muscle forces to parameters of the optimization-based human leg model revealed by analytical and numerical analyses. J Biomech 34:1243–1255

    Article  PubMed  CAS  Google Scholar 

  66. Shirazi-Adl A (2005) Analysis of large compression loads on lumbar spine in flexion and in torsion using a novel wrapping element. J Biomech ( in press)

  67. Shirazi-Adl A, Sadouk S, Parnianpour M, Pop D, El-Rich M (2002) Muscle force evaluation and the role of posture in human lumbar spine under compression. Eur Spine J 11:519–526

    Article  PubMed  CAS  Google Scholar 

  68. Silfies SP, Squillante D, Maurer P, Westcott S, Karduna AR (2005) Trunk muscle recruitment patterns in specific chronic low back pain populations. Clin Biomech 20(5):465–473

    Article  Google Scholar 

  69. Stokes IA, Gardner-Morse M (1999) Quantitative anatomy of the lumbar musculature. J Biomech 32:311–316

    Article  PubMed  CAS  Google Scholar 

  70. Takashima ST, Singh SP, Haderspeck KA, Schultz AB (1979) A model for semi-quantitative studies of muscle actions. J Biomech 12:929–939

    Article  PubMed  CAS  Google Scholar 

  71. Tan JC, Parnianpour M, Nordin M, Hofer H, Willems B (1993) Isometric maximal and submaximal trunk extension at different flexed positions in standing Triaxial torque output and EMG. Spine 18:2480–2490

    PubMed  Article  CAS  Google Scholar 

  72. Urquhart DM, Barker PJ, Hodges PW, Story IH, Briggs CA (2005) Regional morphology of the transversus abdominis and obliquus internus and externus abdominis muscles. Clin Biomech 20:233–241

    Article  Google Scholar 

  73. Van Dieen JH (1997) Are recruitment patterns of the trunk musculature compatible with a synergy based on the maximization of endurance? J Biomech 30:1095–1100

    Article  PubMed  Google Scholar 

  74. Woittiez RD, Huijing PA, Boom HB, Rozendal RH (1984) A three-dimensional muscle model: a quantified relation between form and function of skeletal muscles. J Morphol 182(1):95–113

    Article  PubMed  CAS  Google Scholar 

  75. Yamamoto I, Panjabi M, Crisco T, Oxland T (1989) Three-dimensional movements of the whole lumbar spine and lumbosacral joint. Spine 14:1256–1260

    PubMed  Article  CAS  Google Scholar 

Download references

Acknowledgements

The work is supported by grants from the NSERC-Canada and the IRSST-Québec. The protocol for in vivo measurements was approved by the local ethics committee and all participants signed an informed consent.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Shirazi-Adl.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Arjmand, N., Shirazi-Adl, A. Role of intra-abdominal pressure in the unloading and stabilization of the human spine during static lifting tasks. Eur Spine J 15, 1265–1275 (2006). https://doi.org/10.1007/s00586-005-0012-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00586-005-0012-9

Keywords

  • Intra-abdominal pressure
  • Abdominal coactivity
  • Finite element method
  • Lifting
  • Stability
  • Compression