Andersson GB, Ortengren R, Nachemson A (1976) Quantitative studies of back loads in lifting. Spine 1:178–185
Article
Google Scholar
Andersson GB, Ortengren R, Nachemson A (1977) Intradiskal pressure, intra-abdominal pressure and myoelectric back muscle activity related to posture and loading. Clin Orthop Relat Res 129:156–164
PubMed
Google Scholar
Arjmand N, Shirazi-Adl A (2005) Model and in vivo studies on human trunk load partitioning and stability in isometric forward flexions. J Biomech (in press)
Arjmand N, Shirazi-Adl A, Parnianpour M (2001) A finite element model study on the role of trunk muscles in generating intra-abdominal pressure. Biomed Eng Appl Basis Commun 13(4):23–31
Google Scholar
Bartelink DL (1957) The role of abdominal pressure in relieving the pressure on the lumbar intervertebral discs. J Bone Joint Surg Br 39:718–725
PubMed
Google Scholar
Bergmark A (1989) Stability of the lumbar spine—a study in mechanical engineering. Acta Orthop Scand Suppl 230:1–54
PubMed
CAS
Google Scholar
Bogduk N, Johnson G, Spalding D (1998) The morphology and biomechanics of latissimus dorsi. Clin Biomech 13(6):377–385
Article
Google Scholar
Bogduk N, Macintosh JE, Pearcy MJ (1992) A universal model of the lumbar back muscles in the upright position. Spine 17:897–913
PubMed
Article
CAS
Google Scholar
Chaffin DB (1969) Computerized biomechanical models-development of and use in studying gross body actions. J Biomech 2:429–441
Article
PubMed
CAS
Google Scholar
Chen WJ, Chiou WK, Lee YH, Lee MY, Chen ML (1998) Myo-electric behavior of the trunk muscles during static load holding in healthy subjects and low back pain patients. Clin Biomech 13(1 Suppl 1):S9–S15
Article
Google Scholar
Cholewicki J, Ivancic PC, Radebold A (2002) Can increased intra-abdominal pressure in humans be decoupled from trunk muscle co-contraction during steady state isometric exertions? Eur J Appl Physiol 87(2):127–133
Article
PubMed
Google Scholar
Cholewicki J, Juluru K, McGill SM (1999a) Intra-abdominal pressure mechanism for stabilizing the lumbar spine. J Biomech 32(1):13–17
Article
CAS
Google Scholar
Cholewicki J, Juluru K, Radebold A, Panjabi MM, McGill SM (1999b) Lumbar spine stability can be augmented with an abdominal belt and/or increased intra-abdominal pressure. Eur Spine J 8:388–395
Article
CAS
Google Scholar
Cholewicki J, Reeves NP (2004) All abdominal muscles must be considered when evaluating the intra-abdominal pressure contribution to trunk extensor moment and spinal loading. J Biomech 37:953–954
Article
PubMed
Google Scholar
Cresswell AG (1993) Responses of intra-abdominal pressure and abdominal muscle activity during dynamic trunk loading in man. Eur J Appl Physiol 66(4):315–320
Article
CAS
Google Scholar
Cresswell AG, Grundstrom H, Thorstensson A (1992) Observations on intra-abdominal pressure and patterns of abdominal intra-muscular activity in man. Acta Physiol Scand 144(4):409–418
PubMed
CAS
Google Scholar
Cresswell AG, Thorstensson A (1989) The role of the abdominal musculature in the elevation of the intra-abdominal pressure during specified tasks. Ergonomics 32:1237–1246
PubMed
Article
CAS
Google Scholar
Crisco JJ III, Panjabi MM (1991) The intersegmental and multisegmental muscles of the lumbar spine—a biomechanical model comparing lateral stabilizing potential. Spine 16:793–799
PubMed
Article
Google Scholar
Cyron BM, Hutton WC, Stott JRR (1975) The mechanical properties of the lumbar spine. Mech Eng 8(2):63–68
Article
Google Scholar
Daggfeldt K, Thorstensson A (1997) The role of intra-abdominal pressure in spinal unloading. J Biomech 30:1149–1155
Article
PubMed
CAS
Google Scholar
Daggfeldt K, Thorstensson A (2003) The mechanics of back-extensor torque production about the lumbar spine. J Biomech 36:815–825
Article
PubMed
Google Scholar
Daggfeldt K, Thorstensson A (2004) Author’s response to: “All abdominal muscles must be considered when evaluating the intra-abdominal pressure contribution to trunk extensor moment and spinal loading”. J Biomech 37:955–956
Article
Google Scholar
Damkot DK, Pope MH, Lord J, Frymoyer JW (1984) The relationship between work history, work environment and low-back pain in men. Spine 9(4):395–399
PubMed
Article
CAS
Google Scholar
Davis PR (1956) Variations of the human intra-abdominal pressure during weightlifting in different postures. J Anat 90:601
Google Scholar
Davis J, Kaufman KR, Lieber RL (2003) Correlation between active and passive isometric force and intramuscular pressure in the isolated rabbit tibialis anterior muscle. J Biomech 36:505–512
Article
PubMed
Google Scholar
Davis JR, Mirka GA (2000) Transverse-contour modeling of trunk muscle-distributed forces and spinal loads during lifting and twisting. Spine 25(2):180–189
Article
PubMed
CAS
Google Scholar
Davis PR, Troup JDG (1964) Pressures in the trunk cavities when pulling, pushing and lifting. Ergonomics 7:465–474
Article
Google Scholar
De Looze MP, Groen H, Horemans H, Kingma I, van Dieen JH (1999) Abdominal muscles contribute in a minor way to peak spinal compression in lifting. J Biomech 32(7):655–662
Article
PubMed
Google Scholar
Dvorak J, Panjabi MM, Chang DG, Theiler R, Grob D (1991) Functional radiographic diagnosis of the lumbar spine flexion–extension and lateral bending. Spine 16 (5):562–571
Google Scholar
El-Rich M, Shirazi-Adl A, Arjmand N (2004) Muscle activity, internal loads and stability of the human spine in standing postures: combined model-in vivo studies. Spine 29:2633–2642
Article
PubMed
Google Scholar
Essendrop M, Schibye B (2004) Intra-abdominal pressure and activation of abdominal muscles in highly trained participants during sudden heavy trunk loadings. Spine 29(21):2445–2451
Article
PubMed
Google Scholar
Essendrop M, Schibye B, Hye-Knudsen C (2002) Intra-abdominal pressure increases during exhausting back extension in humans. Eur J Appl Physiol 87(2):167–173
Article
PubMed
CAS
Google Scholar
Farfan HF (1973) Mechanical disorders of low back. Lea and Febiger, Philadelphia, pp 182–189
Google Scholar
Hagins M, Pietrek M, Sheikhzadeh A, Nordin M, Axen K (2004) The effects of breath control on intra-abdominal pressure during lifting tasks. Spine 29(4):464–469
Article
PubMed
Google Scholar
Harman EA, Frykman PN, Clagett ER, Kraemer WJ (1988) Intra-abdominal and intra-thoracic pressures during lifting and jumping. Med Sci Sports Exerc 20(2):195–201
PubMed
CAS
Article
Google Scholar
Harman EA, Rosenstein RM, Frykman PN, Nigro GA (1989) Effects of a belt on intra-abdominal pressure during weight lifting. Med Sci Sports Exerc 21(2):186–190
PubMed
CAS
Google Scholar
Hodges PW, Cresswell AG, Daggfeldt K, Thorstensson A (2001) In vivo measurement of the effect of intra-abdominal pressure on the human spine. J Biomech 34:347–353
Article
PubMed
CAS
Google Scholar
Hodges PW, Gandevia SC (2000) Changes in intra-abdominal pressure during postural and respiratory activation of the human diaphragm. J Appl Physiol 89(3):967–976
PubMed
CAS
Google Scholar
Hoogendoorn WE, Bongers PM, de Vet HC, Douwes M, Koes BW, Miedema MC, Ariens GA, Bouter LM (2000) Flexion and rotation of the trunk and lifting at work are risk factors for low back pain: results of a prospective cohort study. Spine 25:3087–3092
Article
PubMed
CAS
Google Scholar
Hughes RE, Chaffin DB, Lavender SA, Andersson GBJ (1994) Evaluation of muscle force prediction models of the lumbar trunk using surface electromyography. J Orthop Res 12:689–698
Article
PubMed
CAS
Google Scholar
Keith A (1923) Man’s posture: its evolution and disorders. Brit Med J 1:587–590
Article
Google Scholar
Krag MH, Byrne KB, Gilbertson LG, Haugh LD (1986) Failure of intra-abdominal pressurization to reduce erector spinae loads during lifting tasks. In: Proceedings of the 10th annual congress of the North American Society of Biomechanics, Montreal, Canada
Lander JE, Hundley JR, Simonton RL (1992) The effectiveness of weight-belts during multiple repetitions of the squat exercise. Med Sci Sports Exerc 24(5):603–609
PubMed
CAS
Google Scholar
Mairiaux P, Malchaire J, Vandiepenbeeck D, Bellelahom L (1988) Reproducibility of intra-abdominal pressure when lifting. Scand J Rehabil Med 20(2):83–88
PubMed
CAS
Google Scholar
Marras WS, King AI, Joynt RL (1984) Measurements of loads on the lumbar spine under isometric and isokinetic conditions. Spine 9:176–188
PubMed
Article
CAS
Google Scholar
Marras WS, Mirka GA (1996) Intra-abdominal pressure during trunk extension motions. Clin Biomech 11:267–274
Article
Google Scholar
McGill SM (1996) A revised anatomical model of the abdominal musculature for torso flexion efforts. J Biomech 29(7):973–977
Article
PubMed
CAS
Google Scholar
McGill SM, Norman RW (1986) Partitioning of the L4L5 dynamic moment into disc, ligaments and muscular components during lifting. Spine 11:666–678
PubMed
Article
CAS
Google Scholar
McGill SM, Norman RW (1987) Reassessment of the role of intra-abdominal pressure in spinal compression. Ergonomics 30:1565–1588
PubMed
Article
CAS
Google Scholar
McGill SM, Norman RW (1988) Potential of lumbodorsal fascia forces to generate back extension moments during squat lifts. J Biomed Eng 10(4):312–318
PubMed
Article
CAS
Google Scholar
McGill SM, Norman RW (1993) Low back biomechanics in industry: The prevention of injury through safer lifting. In: Grabiner MD (ed) Current issues in biomechanics. Human Kinetics, Champaign, pp 69–120
Google Scholar
McGill SM, Norman RW, Sharratt MT (1990) The effect of an abdominal belt on trunk uscle activity and intra-abdominal pressure during squat lifts. Ergonomics 33:147–60
PubMed
Article
CAS
Google Scholar
Mueller G, Morlock MM, Vollmer M, Honl M, Hille E, Schneider E (1998) Intramuscular pressure in the erector spinae and intra-abdominal pressure related to posture and load. Spine 23(23):2580–2590
Article
PubMed
CAS
Google Scholar
Morris JM, Lucas DM, Bresler B (1961) Role of the trunk in stability of the spine. J Bone Joint Surg Am 43:327–351
Google Scholar
Nachemson AL, Andersson GBJ, Schultz AB (1986) Valsalva maneuver biomechanics Effects on lumbar trunk loads of elevated intraabdominal pressures. Spine 11:476–479
PubMed
Article
CAS
Google Scholar
Ng JKF, Kippers V, Richardson CA (1998) Muscle fibre orientation of abdominal muscles and suggested surface EMG electrode positions. Electromyogr Clin Neurophysiol 38:51–58
PubMed
CAS
Google Scholar
Ng JK, Kippers V, Parnianpour M, Richardson CA (2002) EMG activity normalization for trunk muscles in subjects with and without back pain. Med Sci Sports Exerc 34(7):1082–1086
Article
PubMed
Google Scholar
Nussbaum MA, Chaffin DB (1996) Development and evaluation of a scalable and deformable geometric model of the human torso. Clin Biomech 11(1):25–34
Article
Google Scholar
Oxland T, Lin RM, Panjabi M (1992) Three-dimensional mechanical properties of the thoracolumbar junction. J Orthop Res 10:573–580
Article
PubMed
CAS
Google Scholar
Patwardhan AG, Havey RM, Carandang G, Simonds J, Voronov LI, Ghanayem AJ, Meade KP, Gavin TM, Paxinos O (2003) Effect of compressive follower preload on the flexion–extension response of the human lumbar spine. J Orthop Res 21(3):540–546
Article
PubMed
Google Scholar
Pearcy M, Portek I, Shepherd J (1984) Three-dimensional x-ray analysis of normal movement in the lumbar spine. Spine 9(3):294–297
PubMed
Article
CAS
Google Scholar
Pearsall DJ (1994) Segmental inertial properties of the human trunk as determined from computer tomography and magnetic resonance imagery. PhD Thesis, Queen’s University
Plamondon A, Gagnon M, Maurais G (1988) Application of a stereoradiographic method for the study of intervertebral motion. Spine 13(9):1027–1032
PubMed
Article
CAS
Google Scholar
Potvin JR, McGill SM, Norman RW (1991) Trunk muscle and lumbar ligament contributions to dynamic lifts with varying degrees of trunk flexion. Spine 16:1099–1107
PubMed
Article
CAS
Google Scholar
Raikova RT, Prilutsky BI (2001) Sensitivity of predicted muscle forces to parameters of the optimization-based human leg model revealed by analytical and numerical analyses. J Biomech 34:1243–1255
Article
PubMed
CAS
Google Scholar
Shirazi-Adl A (2005) Analysis of large compression loads on lumbar spine in flexion and in torsion using a novel wrapping element. J Biomech ( in press)
Shirazi-Adl A, Sadouk S, Parnianpour M, Pop D, El-Rich M (2002) Muscle force evaluation and the role of posture in human lumbar spine under compression. Eur Spine J 11:519–526
Article
PubMed
CAS
Google Scholar
Silfies SP, Squillante D, Maurer P, Westcott S, Karduna AR (2005) Trunk muscle recruitment patterns in specific chronic low back pain populations. Clin Biomech 20(5):465–473
Article
Google Scholar
Stokes IA, Gardner-Morse M (1999) Quantitative anatomy of the lumbar musculature. J Biomech 32:311–316
Article
PubMed
CAS
Google Scholar
Takashima ST, Singh SP, Haderspeck KA, Schultz AB (1979) A model for semi-quantitative studies of muscle actions. J Biomech 12:929–939
Article
PubMed
CAS
Google Scholar
Tan JC, Parnianpour M, Nordin M, Hofer H, Willems B (1993) Isometric maximal and submaximal trunk extension at different flexed positions in standing Triaxial torque output and EMG. Spine 18:2480–2490
PubMed
Article
CAS
Google Scholar
Urquhart DM, Barker PJ, Hodges PW, Story IH, Briggs CA (2005) Regional morphology of the transversus abdominis and obliquus internus and externus abdominis muscles. Clin Biomech 20:233–241
Article
Google Scholar
Van Dieen JH (1997) Are recruitment patterns of the trunk musculature compatible with a synergy based on the maximization of endurance? J Biomech 30:1095–1100
Article
PubMed
Google Scholar
Woittiez RD, Huijing PA, Boom HB, Rozendal RH (1984) A three-dimensional muscle model: a quantified relation between form and function of skeletal muscles. J Morphol 182(1):95–113
Article
PubMed
CAS
Google Scholar
Yamamoto I, Panjabi M, Crisco T, Oxland T (1989) Three-dimensional movements of the whole lumbar spine and lumbosacral joint. Spine 14:1256–1260
PubMed
Article
CAS
Google Scholar