Skip to main content
Log in

The Changes of Trunk Motion Rhythm and Spinal Loading During Trunk Flexion and Extension Motions Caused by Lumbar Muscle Fatigue

  • Published:
Annals of Biomedical Engineering Aims and scope Submit manuscript

Abstract

Previous studies indicated that lumbar extensor muscle fatigue could potentially affect lumbar–pelvic rhythm and influence spinal loading during trunk motions. In this study, the effects of lumbar extensor muscle fatigue on the normalized lumbar–pelvic rotation rhythm and the associated L5/S1 joint loading during weight lifting and lowering tasks were investigated. Thirteen volunteers performed lifting and lowering of a 20-lbs box both before and after lumbar extensor muscle fatigue, which was generated through a static weight holding task. The normalized lumbar–pelvic motion ratio (L/P ratio) and the external moment on the L5/S1 joint were calculated and compared. Results showed that subjects demonstrated significantly larger normalized L/P ratios during both weight lifting and lowering tasks with the influence of fatigue. In addition, although the spinal loadings remain unchanged at the beginning and ending of both lifting and lowering motions, significantly larger L5/S1 joint moments were observed during both motions after fatigue. Such changes indicate potentially elevated risk of back injury. In a clinical setting, the current results demonstrated that lumbar muscle fatigue could cause transient changes in lumbar–pelvic motion rhythm. Therefore, lumbar muscle fatigue must be avoided when using lumbar–pelvic motion rhythms for patient diagnosis or rehabilitation assessment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8

Similar content being viewed by others

References

  1. Bogduk, N. A reappraisal of the anatomy of the human lumbar erector spinae. J. Anat. 131:525–540, 1980.

    CAS  PubMed Central  PubMed  Google Scholar 

  2. Bureau of Labor Statistics. Nonfatal occupational injuries and illnesses requiring days away from work [online], 2011. Available from: www.bls.gov/iif/oshcdnew.htm.

  3. Dagenais, S., J. Caro, and S. Haldeman. A systematic review of low back pain cost of illness studies in the United States and internationally. Spine J. 8:8–20, 2008.

    Article  PubMed  Google Scholar 

  4. Davidson, B. S., M. L. Madigan, and M. A. Nussbaum. Effects of lumbar extensor fatigue and fatigue rate on postural sway. Eur. J. Appl. Physiol. 93:183–189, 2004.

    Article  CAS  PubMed  Google Scholar 

  5. Davis, P. R., J. D. Troup, and J. H. Burnard. Movements of the thoracic and lumbar spine when lifting: a chrono-cyclophotographic study. J. Anat. 99:13–26, 1965.

    CAS  PubMed Central  PubMed  Google Scholar 

  6. Descarreaux, M., D. Lafond, R. J. Gauthier, H. Centomo, V. Cantin. Changes in the flexion relaxation response induce d by lumbar muscle fatigue. BMC Musculoskelet Disord.:9–10, 2008.

  7. Esola, M. A., P. W. McClure, G. K. Fitzgerald, and S. Siegler. Analysis of lumbar spine and hip motion during forward bending in subjects with and without a history of low back pain. Spine 21:71–78, 1996.

    Article  CAS  PubMed  Google Scholar 

  8. Farfan, H. F. Muscular mechanism of the lumbar spine and the position of power and efficiency. Orthop. Clin. North Am. 6:135–144, 1975.

    CAS  PubMed  Google Scholar 

  9. Granata, K. P., and P. Gottipati. Fatigue influences the dynamics stability of the torso. Ergonomics 51:1258–1271, 2008.

    Article  CAS  PubMed  Google Scholar 

  10. Granata, K. P., and W. S. Marras. An EMG-assisted model of loads on the lumbar spine during asymmetric trunk extensions. J. Biomech. 26:1429–1438, 1993.

    Article  CAS  PubMed  Google Scholar 

  11. Granata, K. P., W. S. Marras, and K. G. Davis. Biomechanical assessment of lifting dynamics, muscle activity and spinal loads while using three different styles of lifting belt. Clin. Biomech. 12:107–115, 1997.

    Article  Google Scholar 

  12. Granata, K. P., and A. H. Sanford. Lumbar–pelvic coordination is influenced by lifting task parameters. Spine 25:1413–1418, 2000.

    Article  CAS  PubMed  Google Scholar 

  13. Granata, K. P., G. P. Slota, and S. E. Wilson. Influence of fatigue in neuromuscular control of spinal stability. Hum. Factors 46:81–91, 2004.

    Article  PubMed Central  PubMed  Google Scholar 

  14. Hu, B., X. Ning, and A. D. Nimbarte. The changes of lumbar muscle flexion-relaxation response due to laterally slanted ground surfaces. Ergonomics 56:1295–1303, 2013.

    Article  PubMed  Google Scholar 

  15. Hu, B., X. Ning, and A. D. Nimbarte. Changes of lumbar muscle flexion relaxation phenomenon when standing on unilaterally elevated ground. Proc. Hum. Factors Ergon. Soc. Annu. Meet. 57:925–928, 2013.

    Article  Google Scholar 

  16. Hu, B., X. Ning, and M. A. Nussbaum. The influence of hand load on lumbar–pelvic coordination during lifting task. Proc. Hum. Factors Ergon. Soc. Annu. Meet. 58:1617–1621, 2014.

    Article  Google Scholar 

  17. Hu, B., X. Shan, J. Zhou, and X. Ning. The effects of stance width and foot posture on lumbar muscle flexion relaxation phenomenon. Clin. Biomech. 29:311–316, 2014.

    Article  Google Scholar 

  18. Jia, B., S. Kim, and M. A. Nussbaum. An EMG-based model to estimate lumbar muscle forces and spinal loads during complex, high-effort tasks: Development and application to residential construction using prefabricated walls. Int. J. Ind. Ergon. 41:437–446, 2011.

    Article  Google Scholar 

  19. Jiang, Z., G. Shin, J. Freeman, S. Reid, and G. A. Mirka. A study of lifting tasks performed on laterally slanted ground surfaces. Ergonomics 48(7):782–795, 2005.

    Article  PubMed  Google Scholar 

  20. Kankaanpaa, M., S. Taimela, D. Laaksonen, O. Hanninen, and O. Airaksinen. Back and hip extensor fatigability in chronic low back pain patients and controls. Arch. Phys. Med. Rehabil. 79:412–417, 1998.

    Article  CAS  PubMed  Google Scholar 

  21. Luca, De. The use of surface electromyography in biomechanics. J. Appl. Biomech. 13:135–163, 1997.

    Google Scholar 

  22. Luoto, S., H. Heliovaara, H. Hurri, and H. Alaranta. Static back endurance and the risk of low-back pain. Clin. Biomech. 10:323–324, 1995.

    Article  Google Scholar 

  23. Marras, W. S., S. A. Ferguson, D. Burr, and K. G. Davis. Functional impairment as a predictor of spine loading. Spine 30:729–737, 2005.

    Article  PubMed  Google Scholar 

  24. Marras, W. S., S. A. Ferguson, S. A. Lavender, R. E. Splittstoesser, and G. Yang. Cumulative spine loading and clinically meaningful declines in low back function. Hum. Factors 56:29–43, 2014.

    Article  PubMed  Google Scholar 

  25. Marras, W. S., and K. P. Granata. A biomechanical assessment and model of axial twisting in the thoraco-lumbar spine. Spine 20:1440–1451, 1995.

    Article  CAS  PubMed  Google Scholar 

  26. Marras, W. S., and K. P. Granata. An EMG-assisted model of trunk later bending. J. Biomech. 30:697–703, 1997.

    Article  CAS  PubMed  Google Scholar 

  27. Marras, W. S., G. G. Knapik, and S. A. Ferguson. Loading along the lumbar spine as influenced by speed, control, load magnitude, and handle height during pushing. Clin. Biomech. 24:155–163, 2009.

    Article  Google Scholar 

  28. McClure, P. W., M. Esola, R. Schreier, and S. Siegler. Kinematic analysis of lumbar and hip motion while rising from a forward, flexed position in patients with and without a history of low back pain. Spine 22:552–558, 1997.

    Article  CAS  PubMed  Google Scholar 

  29. McGill, S. M., and R. W. Norman. Partitioning of the L4-L5 dynamic moment into disc, ligamentous, and muscular components during lifting. Spine 11:666–678, 1986.

    Article  CAS  PubMed  Google Scholar 

  30. Mirka, G. A., A. Baker, A. Harrison, and D. Kelaher. The interaction between load and coupling during dynamic manual materials handling tasks. Occup. Ergon. 1:3–11, 1998.

    Google Scholar 

  31. Muslim, K., B. Bazrgari, B. Hendershot, N. Toosizadeh, M. Nussbaum, and M. L. Madigan. Disturbance and recovery of trunk mechanical and neuromuscular behaviors following repeated static trunk flexion: influences of duration and duty cycle on creep-induced effects. Appl. Ergon. 44:643–651, 2013.

    Article  PubMed  Google Scholar 

  32. Nelson, J. M., R. P. Walmsley, and J. M. Stevenson. Relative lumbar and pelvic motion during loaded spinal flexion/extension. Spine 20:199–204, 1995.

    Article  CAS  PubMed  Google Scholar 

  33. Ning, X., S. Jin, O. Haddad, and G. A. Mirka. Influence of asymmetry on the flexion relaxation response of the low back musculature. Clin. Biomech. 26:35–39, 2011.

    Article  Google Scholar 

  34. Ning, X., S. Jin, and G. A. Mirka. Describing the active region boundary of EMG-assisted biomechanical models of the low back. Clin. Biomech. 27:422–427, 2012.

    Article  Google Scholar 

  35. Ning, X., and G. A. Mirka. The effect of sinusoidal rolling ground motion on lifting biomechanics. Appl. Ergon. 42(1):131–137, 2010.

    Article  PubMed  Google Scholar 

  36. Paquet, N., F. Malouin, and C. L. Richards. Hip-Spine movement interaction and muscle activation patterns during sagittal trunk movements in low back pain patients. Spine 19:596–603, 1994.

    Article  CAS  PubMed  Google Scholar 

  37. Roy, S. H., C. J. De Luca, L. Snyder-Mackler, M. S. Emley, R. L. Crenshaw, and J. P. Lyons. Fatigue, recovery, and low back pain in varsity rowers. Med. Sci. Sports Exerc. 22:463–469, 1990.

    Article  CAS  PubMed  Google Scholar 

  38. Seay, J. F., R. E. A. Van Emmerik, and J. Hamill. Low back pain status affects pelvis-trunk coordination and variability during walking and running. Clin. Biomech. 26:572–578, 2011.

    Article  Google Scholar 

  39. Shin, G., C. D’Souza, and Y. Liu. Creep and fatigue development in the low back in static flexion. Spine 34:1873–1878, 2009.

    Article  PubMed  Google Scholar 

  40. Shin, G., and G. A. Mirka. An in vivo assessment of the low back response to prolonged flexion: Interplay between active and passive tissues. Clin. Biomech. 22:965–971, 2007.

    Article  Google Scholar 

  41. Shum, G. L. K., J. Crosbie, and R. Y. W. Lee. Effect of low back pain on the kinematics and joint coordination of the lumbar spine and hip during sit-to-stand and stand-to-sit. Spine 30:1998–2004, 2005.

    Article  PubMed  Google Scholar 

  42. Sparto, P. J., M. Parnianpour, T. E. Reinsel, and S. Simon. The effect of fatigue on multijoint kinematics, coordination, and postural stability during a repetitive lifting test. J. Orthop. Sports Phys. Ther. 25:3–12, 1997.

    Article  CAS  PubMed  Google Scholar 

  43. Sparto, P. J., M. Parnianpour, T. E. Reinsel, and S. Simon. (2). ***The effect of fatigue on multijoint kinematics and load sharing during a repetitive lifting test. Spine 22:2647–2654, 1997.

    Article  CAS  PubMed  Google Scholar 

  44. Stewart, W. F., J. A. Ricci, D. Morganstein, and R. Lipton. Lost productive time and cost due to common pain conditions in the US workforce. J. Am. Med. Assoc. 290:2443–2454, 2003.

    Article  CAS  Google Scholar 

  45. Tafazzol, A., N. Arjmand, A. Shirazi-Adl, and M. Parnianpour. Lumbopelvic rhythm during forward and backward sagittal trunk rotations: Combined in vivo measurement with inertial tracking device and biomechanical modeling. Clin. Biomech. 29(1):7–13, 2014.

    Article  CAS  Google Scholar 

  46. Toosizadeh, N., M. A. Nussbaum, B. Bazrgari, and M. L. Madigan. Load-relaxation properties of the human trunk in response to prolonged flexion: measuring and modeling the effect of flexion angle. PloS one 7:e48625, 2012.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  47. Van Tulder, M. W., B. W. Koes, and L. M. Bouter. A cost-of-illness study of back pain in The Netherlands. Pain 62:233–240, 1995.

    Article  PubMed  Google Scholar 

  48. Waddell, G. The back pain revolution. Edinburgh, New York: Churchill Livingstone, 2004.

    Google Scholar 

  49. Wong, T. K. T., and R. Y. W. Lee. Effects of low back pain on the relationship between the movements of the lumbar spine and hip. Hum. Mov. Sci. 23:21–34, 2004.

    Article  PubMed  Google Scholar 

Download references

Acknowledgement

The authors would like to thank Mr. Jie Zhou for his technical assistants during the data collection.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiaopeng Ning.

Additional information

Associate Editor Thurmon E. Lockhart oversaw the review of this article.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hu, B., Ning, X. The Changes of Trunk Motion Rhythm and Spinal Loading During Trunk Flexion and Extension Motions Caused by Lumbar Muscle Fatigue. Ann Biomed Eng 43, 2112–2119 (2015). https://doi.org/10.1007/s10439-015-1248-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10439-015-1248-0

Keywords

Navigation