Skip to main content

Advertisement

Log in

Protective effect of vitamin E against plumbagin-induced liver injury and oxidative stress: biochemical, redox, and mitochondrial permeability changes

  • Original Article
  • Published:
Comparative Clinical Pathology Aims and scope Submit manuscript

Abstract

Plumbagin is a plant-based naphthoquinone with anti-cancer activity. However, its side effects have limited its pharmacological significance. This study examined the effect of treatment of vitamin E on plumbagin-induced hepatic and mitochondrial injury in mice. Mitochondrial permeability transition (mPT), mitochondrial ATPase (mATPase) activity, mitochondrial lipid peroxidation (mLPO), and DNA fragmentation were determined spectrophotometrically according to standard procedures. Histological and biochemical assays were also carried out. Treatment with plumbagin induced significant opening of the mPT pore and enhanced mATPase activity and mLPO. In addition, plumbagin-treated mice showed pathological lesions in liver sections. Conversely, the two ameliorative regimens, pre- and co-treatment vitamin E groups, significantly reversed levels of liver transaminase enzymes and improved the morphological architectures of the livers of plumbagin-treated mice. Besides, plumbagin-induced mPT pore opening, ATPase activity, and percentage DNA fragmentation were significantly reversed by vitamin E. Administration of vitamin E also significantly restored the levels of the total thiol (TSH), glutathione (GSH), and superoxide dismutase (SOD) activity while lipid peroxide generation was attenuated. Taken together, the protective effect of vitamin E on plumbagin-induced liver toxicity and cell death is due to oxidative stress attenuation, improvement in antioxidant status, and amelioration of mitochondrial dysfunction.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data availability

Data available on request.

References

  • Adám-Vizi V, Seregi A (1982) Receptor independent stimulatory effect of noradrenaline on Na, K-ATPase in rat brain homogenate. Role of Lipid Peroxidation Biochem Pharmacol 31:2231–2236. https://doi.org/10.1016/0006-2952(82)90106-x

    Article  PubMed  Google Scholar 

  • Ademowo OS, Dias HKI, Burton DGA, Griffiths HR (2017) Lipid (per) oxidation in mitochondria: an emerging target in the ageing process? Biogerontology 18:859–879

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Anuf AR, Ramachandran R, Krishnasamy R et al (2014) Antiproliferative effects of Plumbago rosea and its purified constituent plumbagin on SK-MEL 28 melanoma cell lines. Pharmacognosy Res 6:312

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bancroft JD, Gamble M (2008) Theory and practice of histological techniques, 6th Edn. Churchill Livingstone, Elsevier, China.

  • Bansal AK, Bansal M, Soni G, Bhatnagar D (2005) Protective role of vitamin E pre-treatment on N-nitrosodiethylamine induced oxidative stress in rat liver. Chem Biol Interact 156:101–111

    Article  CAS  PubMed  Google Scholar 

  • Bassir O (1963) Handbook of Practical Biochemistry

  • Bello IJ, Oyebode OT, Olanlokun JO, Omodara TO, Olorunsogo OO (2021) Plumbagin induces testicular damage via mitochondrial-dependent cell death. Chem Biol Interact 7:109–15. https://doi.org/10.1016/j.cbi.2021.109582

  • Bernardi P, Di Lisa F (2015) The mitochondrial permeability transition pore: molecular nature and role as a target in cardioprotection. J Mol Cell Cardiol 78:100–106

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bhargava SK (1984) Effect of plumbagin on reproductive function of male dog. Indian J Exp Biol 22:153–156

    CAS  PubMed  Google Scholar 

  • Bothiraja C, Kapare HS, Pawar AP, Shaikh KS (2013) Development of plumbagin-loaded phospholipid–Tween® 80 mixed micelles: formulation, optimization, effect on breast cancer cells and human blood/serum compatibility testing. Ther Deliv 4:1247–1259

    Article  CAS  PubMed  Google Scholar 

  • Castro FAV, Mariani D, Panek AD et al (2008) Cytotoxicity mechanism of two naphthoquinones (menadione and plumbagin) in Saccharomyces cerevisiae. PLoS ONE 3:e3999

    Article  PubMed  PubMed Central  Google Scholar 

  • Chalouati H, Ben Saad MM, Payrastre L (2019) Hepatoprotective effects of vitamin E against hexachlorobenzene-induced hepatotoxicity and oxidative stress in rats: histological, biochimical and antioxidant status changes. Toxicol Mech Methods 29:18–25

    Article  CAS  PubMed  Google Scholar 

  • Chen S, Chen Y, Chen B et al (2015) Plumbagin ameliorates CCl4-induced hepatic fibrosis in rats via the epidermal growth factor receptor signaling pathway. Evid-based Complement Altern Med 2015

  • Daniel OO, Adeoye AO, Ojowu J, Olorunsogo OO (2018) Inhibition of liver mitochondrial membrane permeability transition pore opening by quercetin and vitamin E in streptozotocin-induced diabetic rats. Biochem Biophys Res Commun 504(2):460–469

    Article  PubMed  Google Scholar 

  • Demma J, Hallberg K, Hellman B (2009) Genotoxicity of plumbagin and its effects on catechol and NQNO-induced DNA damage in mouse lymphoma cells. Toxicol Vitr 23:266–271

    Article  CAS  Google Scholar 

  • Farr SB, Natvig DO, Kogoma T (1985) Toxicity and mutagenicity of plumbagin and the induction of a possible new DNA repair pathway in Escherichia coli. J Bacteriol 164:1309–1316

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Giacomini I, Cocetta V, Carrara M et al (2020) Plumbagin induces cell cycle arrest and apoptosis in A431 cisplatin-resistant cancer cells. Nat Prod Commun 15:1934578X20921627

  • Giorgio V, Von Stockum S, Antoniel M et al (2013) Dimers of mitochondrial ATP synthase form the permeability transition pore. Proc Natl Acad Sci 110:5887–5892

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Guo JY, Karsli-Uzunbas G, Mathew R et al (2013) Autophagy suppresses progression of K-ras-induced lung tumors to oncocytomas and maintains lipid homeostasis. Genes Dev 27:1447–1461

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • HA W, Bartimaeus ES, Nduka N, Nwanjo HU (2019) Effect of combination therapy of Garcinia kola seed and vitamin E in acetaminophen induced hepatotoxicity and oxidative stress in albino rats

  • He L, He T, Farrar S et al (2017) Antioxidants maintain cellular redox homeostasis by elimination of reactive oxygen species. Cell Physiol Biochem 44:532–553

    Article  PubMed  Google Scholar 

  • Hernandez-Vera G, Mitrović M, Jović J et al (2010) Host-associated genetic differentiation in a seed parasitic weevil Rhinusa antirrhini (Coleptera: Curculionidae) revealed by mitochondrial and nuclear sequence data. Mol Ecol 19:2286–2300

    Article  CAS  PubMed  Google Scholar 

  • Hsieh Y-J, Lin L-C, Tsai T-H (2006) Measurement and pharmacokinetic study of plumbagin in a conscious freely moving rat using liquid chromatography/tandem mass spectrometry. J Chromatogr B 844:1–5

    Article  CAS  Google Scholar 

  • Itoigawa M, Takeya K, Furukawa H (1991) Cardiotonic action of plumbagin on guinea-pig papillary muscle. Planta Med 57:317–319

    Article  CAS  PubMed  Google Scholar 

  • Jayanthi M, Gokulanathan A, Haribalan P et al (2020) Plumbagin from two Plumbago species inhibits the growth of stomach and breast cancer cell lines. Ind Crops Prod 146:112147

    Article  CAS  Google Scholar 

  • Jeong SH, Choi JS, Ko YK, Kang NS (2015) The discovery of bioisoster compound for plumbagin using the knowledge-based rational method. J Mol Struct 1085:84–89

    Article  CAS  Google Scholar 

  • Johnson D, Lardy H (1967) [15] Isolation of liver or kidney mitochondria. Methods Enzymol 10:94–96. https://doi.org/10.1016/0076-6879(67)10018-9

    Article  CAS  Google Scholar 

  • Jollow DJ, Mitchell JR, Zampaglione N, Gillette JR (1974) Bromobenzene-induced liver necrosis. Protective role of glutathione and evidence for 3,4-bromobenzene oxide as the hepatotoxic metabolite. Pharmacology 11:151–169. https://doi.org/10.1159/000136485

    Article  CAS  PubMed  Google Scholar 

  • Kuo P-L, Hsu Y-L, Cho C-Y (2006) Plumbagin induces G2-M arrest and autophagy by inhibiting the AKT/mammalian target of rapamycin pathway in breast cancer cells. Mol Cancer Ther 5:3209–3221

    Article  CAS  PubMed  Google Scholar 

  • Kurutas EB (2015) The importance of antioxidants which play the role in cellular response against oxidative/nitrosative stress: current state. Nutr J 15:1–22

    Article  Google Scholar 

  • Lapidus RG, Sokolove PM (1992) Inhibition by spermine of the inner membrane permeability transition of isolated rat heart mitochondria. FEBS Lett 313:314–318. https://doi.org/10.1016/0014-5793(92)81217-A

    Article  CAS  PubMed  Google Scholar 

  • Liang Y, Zhou R, Liang X et al (2020) Pharmacological targets and molecular mechanisms of plumbagin to treat colorectal cancer: a systematic pharmacology study. Eur J Pharmacol 881:173227

    Article  CAS  PubMed  Google Scholar 

  • Liu Y, Cai Y, He C et al (2017) Anticancer properties and pharmaceutical applications of plumbagin: a review. Am J Chin Med 45:423–441

    Article  PubMed  Google Scholar 

  • Lowry OH, Rosebrough NJ, Farr AL, Randal RJ (1951) Protein measurement with the Folin phenol reagent. J Biol Chem 193:265–275. https://doi.org/10.1016/0922-338X(96)89160-4

    Article  CAS  PubMed  Google Scholar 

  • Mather M, Rottenberg H (2000) REGULAR ARTICLES-Aging enhances the activation of the permeability transition pore in mitochondria. Biochem Biophys Res Commun 273:603–608

    Article  CAS  PubMed  Google Scholar 

  • Mbaveng AT, Zhao Q, Kuete V (2014) Harmful and protective effects of phenolic compounds from African medicinal plants. In: Toxicological Survey of African Medicinal Plants. Elsevier, pp 577–609

  • McCord JM, Fridovich I (1969) Superoxide dismutase: an enzymic function for erythrocuprein (hemocuprein). J Biol Chem 244:6049–6055

    Article  CAS  PubMed  Google Scholar 

  • Odinokova IV, Baburina YL, Kruglov AG et al (2018) Operation of the permeability transition pore in rat heart mitochondria in aging. Biochem (Moscow). Suppl Ser A Membr Cell Biol 12:137–145

    Google Scholar 

  • Oh RC, Hustead TR, Ali SM, Pantsari MW (2017) Mildly elevated liver transaminase levels: causes and evaluation. Am Fam Physician 96:709–715

    PubMed  Google Scholar 

  • Olorunsogo OO, Bababunmi EA, Bassir O (1979) Effect of glyphosate on rat liver mitochondria in vivo. Bull Environ Contam Toxicol 22:357–364. https://doi.org/10.1007/BF02026955

    Article  CAS  PubMed  Google Scholar 

  • Olorunsogo OO, Malomo SO (1985) Sensitivity of oligomycin-inhibited respiration of isolated rat liver mitochondria to perfluidone, a fluorinated arylalkylsulfonamide. Toxicology 35:231–240. https://doi.org/10.1016/0300-483X(85)90018-6

    Article  CAS  PubMed  Google Scholar 

  • Oyebode OT, Akinbusuyi OT, Akintimehin SE, Olorunsogo OO (2017) Modulation of cytochrome C release and opening of the mitochondrial permeability transition pore by Calliandra portoricensis (Benth) Root Bark Methanol Extract. European J Med Plants 20:1–14

    Article  Google Scholar 

  • Oyebode OT, Odejide TT, Kukoyi AJ et al (2012) Effects of different fractions of Calliandra portoricensis root bark on isolated rat liver mitochondrial membrane permeability transition pore. Afr J Med Med Sci 41:399–409

    CAS  PubMed  Google Scholar 

  • Padhye S, Dandawate P, Yusufi M et al (2012) Perspectives on medicinal properties of plumbagin and its analogs. Med Res Rev 32:1131–1158

    Article  CAS  PubMed  Google Scholar 

  • Panda M, Tripathi SK, Biswal BK (2020) Plumbagin promotes mitochondrial mediated apoptosis in gefitinib sensitive and resistant A549 lung cancer cell line through enhancing reactive oxygen species generation. Mol Biol Rep 47:4155–4168

    Article  CAS  PubMed  Google Scholar 

  • Pandey K, Tripathi SK, Panda M, Biswal BK (2020) Prooxidative activity of plumbagin induces apoptosis in human pancreatic ductal adenocarcinoma cells via intrinsic apoptotic pathway. Toxicol Vitr 65:104788

    Article  CAS  Google Scholar 

  • Raj G, Kurup R, Hussain AA, Baby S (2011) Distribution of naphthoquinones, plumbagin, droserone, and 5-O-methyl droserone in chitin-induced and uninduced Nepenthes khasiana: molecular events in prey capture. J Exp Bot 62:5429–5436

    Article  CAS  PubMed  Google Scholar 

  • Ramachandran A, Visschers RGJ, Duan L et al (2018) Mitochondrial dysfunction as a mechanism of drug-induced hepatotoxicity: current understanding and future perspectives. J Clin Transl Res 4:75

    CAS  PubMed  PubMed Central  Google Scholar 

  • Reitman S, Frankel, (1957) A colorimetric method for the determination of serum glutamic oxalacetic and glutamic pyruvic transaminases. Am J Clin Pathol 28:56–63. https://doi.org/10.1093/ajcp/28.1.56

    Article  CAS  PubMed  Google Scholar 

  • Rizvi S, Raza ST, Faizal Ahmed AA et al (2014) The role of vitamin E in human health and some diseases. Sultan Qaboos Univ Med J 14:e157

    PubMed  PubMed Central  Google Scholar 

  • Sandur SK, Ichikawa H, Sethi G et al (2006) Plumbagin (5-hydroxy-2-methyl-1, 4-naphthoquinone) suppresses NF-κB activation and NF-κB-regulated gene products through modulation of p65 and IκBα kinase activation, leading to potentiation of apoptosis induced by cytokine and chemotherapeutic agents. J Biol Chem 281:17023–17033

    Article  CAS  PubMed  Google Scholar 

  • Sinha S, Pal K, Elkhanany A et al (2013) Plumbagin inhibits tumorigenesis and angiogenesis of ovarian cancer cells in vivo. Int J Cancer 132:1201–1212

    Article  CAS  PubMed  Google Scholar 

  • SivaKumar V, Prakash R, Murali MR et al (2005) In vivo micronucleus assay and GST activity in assessing genotoxicity of plumbagin in Swiss albino mice. Drug Chem Toxicol 28:499–507

    Article  CAS  PubMed  Google Scholar 

  • Song Y, Yuan Y, Shi X, Che Y (2020) Improved drug delivery and anti-tumor efficacy of combinatorial liposomal formulation of genistein and plumbagin by targeting Glut1 and Akt3 proteins in mice bearing prostate tumor. Colloids Surfaces B Biointerfaces 190:110966

    Article  CAS  PubMed  Google Scholar 

  • Subramaniya BR, Srinivasan G, Mohammed Sadullah SS et al (2011) Apoptosis inducing effect of plumbagin on colonic cancer cells depends on expression of COX-2. PLoS ONE 6:e18695

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sukkasem N, Chatuphonprasert W, Jarukamjorn K (2018) Altered cytochrome P450 profiles by Plumbago indica Linn. and plumbagin after oral administration in mice. Pharmacogn Mag 14:507

  • Sukkasem N, Chatuphonprasert W, Tatiya-Aphiradee N, Jarukamjorn K (2016) Imbalance of the antioxidative system by plumbagin and Plumbago indica L. extract induces hepatotoxicity in mice. J Intercult Ethnopharmacol 5:137

  • Sumsakul W, Plengsuriyakarn T, Chaijaroenkul W et al (2014) Antimalarial activity of plumbagin in vitro and in animal models. BMC Complement Altern Med 14:1–6

    Article  Google Scholar 

  • Traber MG (2007) Vitamin E regulatory mechanisms. Annu Rev Nutr 27:347–362

    Article  CAS  PubMed  Google Scholar 

  • Varshney R, Kale RK (1990) Effects of calmodulin antagonists on radiation-induced lipid peroxidation in microsomes. Int J Radiat Biol 58:733–743. https://doi.org/10.1080/09553009014552121

    Article  CAS  PubMed  Google Scholar 

  • Veeresham C (2012) Natural products derived from plants as a source of drugs. J Adv Pharm Technol Res 3:200

    Article  PubMed  PubMed Central  Google Scholar 

  • Wang F, Wang Q, Zhou Z-W et al (2015) Plumbagin induces cell cycle arrest and autophagy and suppresses epithelial to mesenchymal transition involving PI3K/Akt/mTOR-mediated pathway in human pancreatic cancer cells. Drug Des Devel Ther 9:537

    CAS  PubMed  PubMed Central  Google Scholar 

  • Wei Y, Huang M, Liu X et al (2015) Anti-fibrotic effect of plumbagin on CCl4-lesioned rats. Cell Physiol Biochem 35:1599–1608

    Article  CAS  PubMed  Google Scholar 

  • Wei Y, Yang Q, Zhang Y et al (2017) Plumbagin restrains hepatocellular carcinoma angiogenesis by suppressing the migration and invasion of tumor-derived vascular endothelial cells. Oncotarget 8:15230

    Article  PubMed  PubMed Central  Google Scholar 

  • Wu LL, Chiou CC, Chang P, Wu JT (2004) Urinary 8-OHdG: a marker of oxidative stress to DNA and risk factor for cancer, atherosclerosis and diabetics. Clin Chiminca Acta 339(1–2):1–2

  • Zhou Z-W, Li X-X, He Z-X et al (2015) Induction of apoptosis and autophagy via sirtuin1-and PI3K/Akt/mTOR-mediated pathways by plumbagin in human prostate cancer cells. Drug Des Devel Ther 9:1511

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Olubukola T. Oyebode.

Ethics declarations

Funding

This research received no external funding.

Conflict of interest

The authors declare no competing interests.

Ethical approval

ARRIVE guidelines were strictly followed and all experimental procedures were conducted according to the University of Ibadan Animal Care and Use Research Ethics Committee (ACUREC) with approval number-UI-ACUREC/2065100 which conformed to that of NIH and was strictly adhered to.

Informed consent

For this type of study informed consent is not required.

Consent for publication

All authors of the paper have read, approved, and consented to the final version submitted.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Oyebode, O.T., Bello, I.J., Faleke, H. et al. Protective effect of vitamin E against plumbagin-induced liver injury and oxidative stress: biochemical, redox, and mitochondrial permeability changes. Comp Clin Pathol 32, 311–320 (2023). https://doi.org/10.1007/s00580-023-03441-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00580-023-03441-w

Keywords

Navigation