Comparative Clinical Pathology

, Volume 19, Issue 2, pp 141–145 | Cite as

Studies on the stability of myoglobin in the presences of sodium dodecyl sulfate (SDS) and temperature

  • B. Shareghi
  • H. Nazem
  • Z. Karimi dehkordiEmail author
  • A. Jafari Dehkordi
Original Article


This study investigated the stability of myoglobin under different temperatures and sodium dodecyl sulfate (SDS) concentrations. The conformational changes of the protein embedded in SDS with different pH (2, 4.5, and 7.4) and temperature (from 30°C to 100°C) were evaluated using absorption and fluorescence spectroscopy methods. Results indicated that increasing the SDS concentration increased the stability of myoglobin at pH 2 and 4.5, while pH 7.4 had a negative influence on the stability of myoglobin processes. Fluorescence intensities decreased at 50°C and 60°C in pH 2, while they increased at 30°C, 40°C, and 50°C in pH 7.4. The intensity of fluorescence at pH 4.5 remained constant without detectable changes throughout the experiment. In conclusion, increasing pH increased T m occurred, and therefore, the stability of native myoglobin also increased. Myoglobin denaturation with SDS led to an increase in the myoglobin stability at pH 2 and 4.5 and a decrease of the myoglobin stability at pH 7.4.


Myoglobin Stability SDS and temperature Temperature 



The authors greatly appreciate the support of this research by the Payamnoor University of Tehran, Iran. The authors thank Zahra Hashemi and Azardokht Reeisi for their help in the biochemistry laboratory.


  1. Ahmad F, Bigelow CC (1982) Estimation of the free energy of stabilization of ribonuclease A, lysozyme, alpha-lactalbumin, and myoglobin. J Biol Chem 257:12935–12938PubMedGoogle Scholar
  2. Bhattacharya S, Sukits SF, MacLaughlin KL, Lecomte JT (1997) The tautomeric state of histidines in myoglobin. Biophys J 73:3230–3240. doi: 10.1016/S0006-3495(97)78348-6 CrossRefPubMedGoogle Scholar
  3. Bottini M, Venere AD, Lugli P, Rosato N (2004) Conformation and stability of myoglobin in dilute and crowded organically modified media. J Non-Cryst Solids 343:101–108. doi: 10.1016/j.jnoncrysol.2004.08.061 CrossRefGoogle Scholar
  4. Cooper A (1999) Thermodynamic analysis of biomolecular interactions. Curr Opin Chem Biol 3:557–563. doi: 10.1016/S1367-5931(99)00008-3 CrossRefPubMedGoogle Scholar
  5. Jones MN (1992) Surfactant interactions with biomembranes and proteins. Chem Soc Rev 21:127–136. doi: 10.1039/cs9922100127 CrossRefGoogle Scholar
  6. Kuhlman B, Boice JA, Fairman R, Raleigh DP (1998) Structure and stability of the N-terminal domain of the ribosomal protein L9: evidence for rapid two-state folding. Biochemistry 37:1025–1032. doi: 10.1021/bi972352x CrossRefPubMedGoogle Scholar
  7. Kuhlmani B, RaleighGlobal DP (1998) Analysis of the thermal and chemical denaturation of the N-terminal domain of the ribosomal protein L9 in H20 and D20. Determination of the thermodynamic parameters and evaluation of solvent isotope effects. Protein Sci 7:2405–2412CrossRefGoogle Scholar
  8. Lin L, Pinker RJ, Phillips GN, Kallenbach NR (1994) Stabilization of myoglobin by multiple alanine substitutions in helical positions. Protein Sci 3:1430CrossRefPubMedGoogle Scholar
  9. Monera OD, Kay CM, Hodges RS (1994) Protein denaturation with guanidine hydrochloride or urea provides a different estimate of stability depending on the contributions of electrostatic interactions. Protein Sci 3:1984CrossRefPubMedGoogle Scholar
  10. Nemethy G, Peer WJ, Scheraga HA (1981) Effect of protein–solvent interactions on protein conformation. Annu Rev Biophys Bioeng 10:459–497. doi: 10.1146/ CrossRefPubMedGoogle Scholar
  11. Pinker RJ, Lin L, Rose GD, Kallenbach NR (1993) Effects of alanine substitutions in {alpha}-helices of sperm whale myoglobin on protein stability. Protein Sci 2:1099CrossRefPubMedGoogle Scholar
  12. Tofani L, Feis A, Snoke RE, Berti D, Baglioni P, Smulevich G (2004) Spectroscopic and interfacial properties of myoglobin/surfactant complexes. Biophys J 87:1186–1195. doi: 10.1529/biophysj.104.041731 CrossRefPubMedGoogle Scholar
  13. Ueki N, Ochiai Y (2005) Structural stabilities of recombinant Scombridae fish myoglobins. Biosci Biotechnol Biochem 69:1935–1943. doi: 10.1271/bbb.69.1935 CrossRefPubMedGoogle Scholar
  14. Valentin-Rodriguez C, Lopez-Garriga J, Torres-Lugo M (2007) The effect of pre-polymeric solution and subsequent encapsulation in hydrogel membranes on the stability and biological activity of horse myoglobins. Engineering in Medicine and Biology Society, 2007 (EMBS 2007). 29th Annual International Conference of the IEEE, pp. 5103–5106.Google Scholar
  15. van den Berg B, Ellis RJ, Dobson CM (1999) Effects of macromolecular crowding on protein folding and aggregation. EMBO J 18:6927–6933. doi: 10.1093/emboj/18.24.6927 CrossRefPubMedGoogle Scholar
  16. van den Berg B, Wain R, Dobson CM, Ellis RJ (2000) Macromolecular crowding perturbs protein refolding kinetics: implications for folding inside the cell. EMBO J 19:3870–3875. doi: 10.1093/emboj/19.15.3870 CrossRefPubMedGoogle Scholar
  17. Wiliam CB, Regis AB, Juliana Fattori A, Marcelo A, Santoro C, Marc Jamin D, Carlos HI, Ramos A (2005) On the difference in stability between horse and sperm whale myoglobins. Arch Biochem Biophys 436:168–177. doi: 10.1016/ CrossRefGoogle Scholar

Copyright information

© Springer-Verlag London Limited 2009

Authors and Affiliations

  • B. Shareghi
    • 1
  • H. Nazem
    • 2
  • Z. Karimi dehkordi
    • 2
    Email author
  • A. Jafari Dehkordi
    • 3
  1. 1.Science FacultyShahrekord UniversityShahrekordIran
  2. 2.Department of Biochemistry, Science FacultyPayamnoor UniversityTehranIran
  3. 3.Department of Large Animal Internal Medicine, Veterinary FacultyShahrekord UniversityShahrekordIran

Personalised recommendations