Skip to main content
Log in

Dehydration-induced Initial Conformational Change of Hydrated Proteins Detected by the Changes in Vibrational Circular Dichroism Activity

  • Published:
Analytical Sciences Aims and scope Submit manuscript

Abstract

Conformational changes of hydrated proteins induced by gradual dehydration were monitored by vibrational circular dichroism (VCD) spectroscopy. In myoglobin and casein, representative α-helix-rich and random-coil proteins, respectively, an increase in left-handed optical activity in the amide I band was detected at the initial stage of dehydration, followed by an increase in opposite right-handed activity in both the amide I and II bands with further dehydration. Because the second step was observed with an increase in the turbidity of the proteins, it can be attributed to their aggregation. In contrast, because the increase in left-handed optical activity is induced by the conformational change of the proteins and is followed by the aggregation, it may derive from the increase in the regularity of the local structure in individual myoglobin or casein that triggers the aggregation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. L. M. Mannuzzu, M. M. Moronne, and E. Y. Isacoff, Science, 1996, 271, 213.

    Article  CAS  PubMed  Google Scholar 

  2. S. Yamamoto, G. P. Subedi, S. Hanashima, T. Satoh, M. Otaka, H. Wakui, K. Sawada, S. Yokota, Y. Yamaguchi, H. Kubota, and H. Itoh, J. Biol. Chem., 2014, 289, 9880.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. T. Oka, K. Inoue, M. Kataoka, and N. Yagi, Biophys. J., 2005, 88, 436.

    Article  CAS  PubMed  Google Scholar 

  4. Y. Nakasone, K. Zikihara, S. Tokutomi, and M. Terazima, Biophys. J., 2010, 99, 3831.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. C. V. Pagba and B. A. Barry, J. Phys. Chem. B, 2012, 116, 10590.

    Article  CAS  PubMed  Google Scholar 

  6. X. Ding, X. Zhao, and A. Watts, Biochem. J., 2013, 450, 443.

    Article  CAS  PubMed  Google Scholar 

  7. F. Korkmaz, S. Ressl, C. Ziegler, and W. Mäntele, Biochim. Biophys. Acta, 2013, 1828, 1181.

    Article  CAS  PubMed  Google Scholar 

  8. K. Takeda, Y. Nakasone, K. Zikihara, S. Tokutomi, and M. Terazima, J. Phys. Chem. B, 2013, 117, 15606.

    Article  CAS  PubMed  Google Scholar 

  9. C. M. Dobson, Nature, 2003, 426, 884.

    Article  CAS  PubMed  Google Scholar 

  10. N. Gregersen, P. Bross, S. Vang, and J. H. Christensen, Annu. Rev. Genomics Hum. Genet., 2006, 7, 103.

    Article  CAS  PubMed  Google Scholar 

  11. F. Chiti and C. M. Dobson, Nat. Chem. Biol., 2009, 5, 15.

    Article  CAS  PubMed  Google Scholar 

  12. J. J. Yerbury, E. M. Stewart, A. R. Wyatt, and M. R. Wilson, EMBO Rep., 2005, 6, 1131.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. F. Meersman, L. Smeller, and K. Heremans, Biophys. J., 2002, 82, 2635.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. G. Shanmugam and P. L. Polavalapu, Biophys. Chem., 2004, 111, 73.

    Article  CAS  PubMed  Google Scholar 

  15. A. Hédoux, Y. Guinet, and L. Paccou, J. Phys. Chem. B, 2011, 115, 6740.

    Article  PubMed  Google Scholar 

  16. S. Yamamoto and H. Watarai, Chirality, 2012, 24, 97.

    Article  CAS  PubMed  Google Scholar 

  17. Q. Wang, Y. Wang, and H. P. Lu, J. Raman Spectrosc., 2013, 44, 670.

    Article  CAS  Google Scholar 

  18. A. E. Mark and W. F. van Gunsteren, Biochemistry, 1992, 31, 7745.

    Article  CAS  PubMed  Google Scholar 

  19. A. Caflisch and M. Karplus, J. Mol. Biol., 1995, 252, 672.

    Article  CAS  PubMed  Google Scholar 

  20. S. Chowdhury, H. Lei, and Y. Duan, J. Phys. Chem. B, 2005, 109, 9073.

    Article  CAS  PubMed  Google Scholar 

  21. (a) S. J. Prestrelski, N. Tedeschi, T. Arakawa, and J. F. Carpenter, Biophys. J., 1993, 65, 661. (b) A. M. Squires, G. L. Devlin, S. L. Gras, A. K. Tickler, C. E. MacPhee, and C. M. Dobson, J. Am. Chem. Soc., 2006, 128, 11738. (c) F. Mallamace, S.-H. Chen, M. Broccio, C. Corsaro, V. Crupi, P. Baglioni, E. Fratini, C. Vannucci, and H. E. Stanley, J. Chem. Phys., 2007, 127, 045104. (d) S. Mukherjee, P. Chowdhury, and F. Gai, J. Phys. Chem. B, 2007, 111, 4596. (e) J. Zhang and Y. B. Yan, Protein Pept. Lett., 2008, 15, 650. (f) A. Hédoux, L. Paccou, S. Achir, and Y. Guinet, J. Pharm. Sci., 2012, 101, 2316. (g) M Adrover, G. Martorell, S. R. Martin, D. Urosev, P. V. Konarev, D. I. Svergun, X. Daura, P. Temussi, and A. Pastore, J. Mol. Biol., 2012, 417, 413.

    Google Scholar 

  22. (a) N. Sengupta, S. Jaud, and D. J. Tobias, Biophys. J., 2008, 95, 5257. (b) S. Chankraborty and S. Bandyopadhyay, J. Phys. Chem. B, 2008, 112, 6500. (c) Y. Zhang, M. Lagi, D. Liu, F. Mallamace, E. Fratini, P. Baglioni, E. Mamontov, M. Hagen, and S.-H. Chen, J. Chem. Phys., 2009, 130, 135101. (d) S. Abel, M. Waks, and M. Marchi, Eur. Phys. J. E, 2010, 32, 399. (e) P. Das and S. Matysiak, J. Phys. Chem. B, 2012, 116, 5342.

    Google Scholar 

  23. P. Pancoska, S. C. Yasui, and T. A. Keidering, Biochemistry, 1989, 28, 5917.

    Article  CAS  PubMed  Google Scholar 

  24. V. P. Gupta and T. A. Keiderling, Biopolymers, 1992, 32, 239.

    Article  CAS  PubMed  Google Scholar 

  25. G. Shanmugam and P. L. Polavalapu, J. Am. Chem. Soc., 2004, 126, 10292.

    Article  CAS  PubMed  Google Scholar 

  26. S. Ma, X. Cao, M. Mak, A. Sadik, C. Walkner, T. B. Freedman, I. K. Lednev, R. K. Dukor, and L. A. Nafie, J. Am. Chem. Soc., 2007, 129, 12364.

    Article  CAS  PubMed  Google Scholar 

  27. T. J. Measey, K. B. Smith, S. M. Decatur, L. Zhao, G. Yang, and R. Schweitzer-Stenner, J. Am. Chem. Soc., 2009, 131, 18218.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. T. J. Measey and R. Schweitzer-Stenner, J. Am. Chem. Soc., 2011, 133, 1066.

    Article  CAS  PubMed  Google Scholar 

  29. D. Kurouski, R. K. Dukor, X. Lu, L. A. Nafie, and I. K. Lednev, Biophys. J., 2012, 103, 522.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. T. Iwata, A. Yamamoto, S. Tokutomi, and H. Kandori, Biochemistry, 2007, 46, 7016.

    Article  CAS  PubMed  Google Scholar 

  31. S. Ye and A. Markelz, J. Phys. Chem. B, 2010, 114, 15151.

    Article  CAS  PubMed  Google Scholar 

  32. J. Vojtěchovský, K. Chu, J. Berendzen, R. M. Sweet, and I. Schlichting, Biophys. J., 1999, 77, 2153.

    Article  PubMed  PubMed Central  Google Scholar 

  33. M. Darewicz and J. Dziuba, Eur. Food Res. Technol., 2007, 226, 147.

    Article  CAS  Google Scholar 

  34. K. Konno, I. Shiina, and H. Yui, J. Mol. Struct., 2013, 1035, 260.

    Article  CAS  Google Scholar 

  35. D. Lin-Vien, N. B. Colthup, W. G. Fateley, and J. G. Grasselli, “The Handbook of Infrared and Raman Characteristic Frequencies of Organic Molecules”, 1991, Academic Press, Boston.

  36. M. D. Shoulders and R. T. Raines, Annu. Rev. Biochem., 2009, 78, 929.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. J. P. R. O. Orgel, T. C. Irving, A. Miller, and T. J. Wess, Proc. Natl. Acad. Sci. U. S. A., 2006, 103, 9001.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hiroharu Yui.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Morisaku, T., Arai, S. & Yui, H. Dehydration-induced Initial Conformational Change of Hydrated Proteins Detected by the Changes in Vibrational Circular Dichroism Activity. ANAL. SCI. 30, 961–969 (2014). https://doi.org/10.2116/analsci.30.961

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2116/analsci.30.961

Keywords

Navigation