Skip to main content
Log in

Small-intestinal myoelectric activity in sheep: rebound excitation versus phase-3-like activity revealed by hexamethonium and atropine administration

  • Original Article
  • Published:
Comparative Clinical Pathology Aims and scope Submit manuscript

Abstract

Postinhibitory or rebound excitation (RE) is a known phenomenon in gastrointestinal motility, but its precise character and triggering mechanisms have not been defined so far. This study was thus devoted to analyzing its occurrence following hexamethonium (Hx) and atropine (At) administration during various phases of the migrating myoelectric or motor complex (MMC) in fasted, non-fasted, and fed sheep and to determine the nature of RE in comparison with phase 3 of the small-intestinal MMC. In the course of chronic experiments, various doses of Hx and At evoked RE alternating with phase-3-like activity (not the organized phase 3 of the MMC or its fragments) with periods and intensities related to the drug dose. In non-fasted sheep these changes were less pronounced and more delayed, while after feeding no excitatory response was observed. When the drug was given during phase 1 of the MMC, RE did not occur or was greatly reduced and delayed. Hx triggered RE mostly in the duodenum and At mostly in the jejunum. Rather, no RE was observed in the ileum. It is concluded that Hx and At inhibit small-intestinal motility and evoke RE and phase-3-like activity as a secondary stimulatory response in conscious sheep.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Aeberhard P, Bedi BS (1977) Effects of proximal gastric vagotomy (PGV) followed by total vagotomy (TV) on postprandial and fasting myoelectrical activity of the canine stomach and duodenum. Gut 18:515–523

    Article  PubMed  CAS  Google Scholar 

  • Allescher H-D, Daniel EE, Fox JET, Kostolanska F, Rovati LA (1989) Effect of the novel cholecystokinin receptor antagonist CR-1392 on cholecystokinin-induced antroduodenal and pyloric motor activity in vivo. J Pharmacol Exp Ther 251:1134–1141

    PubMed  CAS  Google Scholar 

  • Andrews PLR (1990) Central organization of the vagal drive to the nonadrenergic noncholinergic neurones controlling gastric motility. Arch Int Pharmacodyn 303:167–198

    PubMed  CAS  Google Scholar 

  • Baccari MC, Calamai F, Staderini G (1991) Vagally-induced non-adrenergic, non-cholinergic inhibitory motility in the rabbit stomach “in vivo”. Funct Neurol 6:239–242

    PubMed  CAS  Google Scholar 

  • Bayguinov O, Vogalis F, Morris B, Sanders KM (1992) Patterns of electrical activity and neural responses in canine proximal duodenum. Am J Physiol 263:G887–G894

    PubMed  CAS  Google Scholar 

  • Behrns KE, Sarr MG (1994) Duodenal nutrients inhibit canine jejunal fasting motor patterns through a hormonal mechanism. Dig Dis Sci 39:1665–1671

    Article  PubMed  CAS  Google Scholar 

  • Blennehassett MG, Lourenssen S (2000) Neural regulation of intestinal smooth muscle growth in vitro. Am J Physiol 279:G511–G519

    Google Scholar 

  • Bornstein JC, Costa M, Grider JR (2004) Enteric motor and interneuronal circuits controlling motility. Neurogastroenterol Motil 16(suppl 1):34–38

    Article  PubMed  Google Scholar 

  • Brown EN, Galligan JJ (2003) Muscarinic receptors couple to modulation of nicotinic ACh receptor desensitization in myenteric neurons. Am J Physiol 285:G37–G44

    CAS  Google Scholar 

  • Bueno L, Praddaude F (1979) Electrical activity of the gallbladder and biliary tract in sheep and its relationships with antral and duodenal motility. Ann Biol Anim Biochim Biophys 19:1109–1121

    Article  Google Scholar 

  • Bueno L, Ruckebusch Y (1978a) Effect of anticholinergic drugs on the electrical activity of the antrum and duodeno-jejunum in sheep. V Vet Pharmacol Ther 1:225–232

    Article  CAS  Google Scholar 

  • Bueno L, Ruckebusch Y (1978b) Migrating myoelectrical complexes: disruption, enhancement and disorganization. In: Duthie HL (ed) Gastrointestinal motility and health and disease. MTP, Lancaster, pp 83–91

    Google Scholar 

  • Buéno L, Ruckebusch M (1976) Insulin and jejunal electrical activity in dogs and sheep. Am J Physiol 230:1538–1544

    PubMed  Google Scholar 

  • Caulfield MP, Birdsall NJM (1998) International Union of Pharmacology. XVII. Classification of muscarinic acetylcholine receptors. Pharmacol Rev 50:279–290

    CAS  Google Scholar 

  • Chang C-S, Chou J-W, Wu C-Y, Chang Y-H, Ko C-W, Chen G-H (2002) Atropine-induced gastric dysrhythmia is not normalized by electroacupuncture. Dig Dis Sci 47:2466–2472

    Article  PubMed  CAS  Google Scholar 

  • Code CF, Marlett JA (1975) The interdigestive myoelectric complex of the stomach and small bowel of dogs. J Physiol 246:289–309

    PubMed  CAS  Google Scholar 

  • Cottrell DF (1994) Vagal reflex inhibition of motility in the abomasal body of sheep by antral and duodenal tension receptors. Vet Res Commun 18:319–330

    Article  PubMed  CAS  Google Scholar 

  • Cottrell DF, Gregory PC (1991) Regulation of gut motility by luminal stimuli in the ruminant. In: Tsuda T, Sasaki Y, Kawashima R (eds) Physiological aspects of digestion and metabolism in ruminants: Proceedings of the Seventh International Symposium on Ruminant Physiology. Academic, San Diego, pp 3–32

    Google Scholar 

  • Cottrell DF, Reynolds GW (1994) Electrophysiological characteristics of tension receptors in the abomasal antrun of sheep. Vet Res Commun 18:225–238

    Article  PubMed  CAS  Google Scholar 

  • Coulie B, Tack J, Peeters T, Janssens J (1998) Involvement of two different pathways in the motor effects of erythromycin on the gastric antrum in humans. Gut 43:395–400

    Article  PubMed  CAS  Google Scholar 

  • Coulson FR, Jacoby DB, Fryer AD (2002) Increased function of inhibitory neuronal M2 muscarinic receptors in trachea and ileum of diabetic rats. Br J Pharmacol 135:1355–1362

    Article  PubMed  CAS  Google Scholar 

  • Cuomo R, Vandaele P, Coulie B, Peeters T, Depoortere I, Janssens J, Tack J (2006) Influence of motilin on gastric fundus tone and on meal-induced satiety in man: role of cholinergic pathways. Am J Gastroenterol 101:804–811

    Article  PubMed  Google Scholar 

  • Daniel EE (1982) Pharmacology of adrenergic, cholinergic, and drugs acting on other receptors in gastrointestinal muscle. In: Bertaccini G (ed) Handbook of experimental pharmacology. Springer–Verlag, Berlin, pp 249–322

    Google Scholar 

  • Delbro D, Gustafsson BI (1989) Vagally induced hexamethonium-resistant jejunal contractions in the cat. Acta Physiol Scand 136:143–144

    Article  PubMed  CAS  Google Scholar 

  • Dent J, Dodds WJ, Sekiguchi T, Hogan WJ, Arndorfer RC (1983) Interdigestive phasic contractions of the human lower esophageal sphincter. Gastroenterology 84:453–460

    PubMed  CAS  Google Scholar 

  • Dujic Z, Roerig DL, Schedewie HK, Kampine JP, Bosnjak ZJ (1990) Presynaptic modulation of ganglionic ACh release by muscarinic and nicotinic receptors. Am J Physiol 259:R288–R293

    PubMed  CAS  Google Scholar 

  • Edholm T, Levin F, Hellström PM, Schmidt PT (2004) Ghrelin stimulates motility in the small intestine of rats through intrinsic cholinergic neurons. Regul Pept 121:25–30

    Article  PubMed  CAS  Google Scholar 

  • Eglen RM (2001) Muscarinic receptors and gastrointestinal tract smooth muscle function. Life Sci 68:2573–2578

    Article  PubMed  CAS  Google Scholar 

  • Eglen RM, Michel AD, Kunysz EA, Cornett CM, Whiting RL (1988) Analysis of the interaction of hexamethonium with muscarinic receptors in vitro. Br J Pharmacol 95:511P

    Google Scholar 

  • Eglen RM, Reddy H, Watson N (1994) Selective inactivation of muscarinic receptor subtypes. Int J Biochem 26:1357–1368

    Article  PubMed  CAS  Google Scholar 

  • Ehlert FJ (2003) Contractile role of M2 and M3 muscarinic receptors in gastrointestinal, airway and urinary bladder smooth muscle. Life Sci 74:355–366

    Article  PubMed  CAS  Google Scholar 

  • El-Sharkawy TY, Markus H, Diamant NE (1982) Neural control of the intestinal migrating myoelectric complex. A pharmacological analysis. Can J Physiol Pharmacol 60:794–804

    CAS  Google Scholar 

  • Feighner SD, Tan CP, McKee KK et al (1999) Receptor for motilin identified in the human gastrointestinal system. Science 284:2184–2188

    Article  PubMed  CAS  Google Scholar 

  • Feletou M, Nicolas JP, Rodriguez M, Beauverger P, Galizzi JP, Boutin JA, Duhault J (1999) NPY receptor subtype in the rabbit isolated ileum. Br J Pharmacol 127:795–801

    Article  PubMed  CAS  Google Scholar 

  • Feurle GE, Pfeiffer A, Schmidt T, Dominguez-Munoz E, Malfertheiner P, Hamscher G (2001) Phase III of the migrating motor complex: associated with endogenous xenin plasma peaks and induced by exogenous xenin. Neurogastroenterol Motil 13:237–246

    Article  PubMed  CAS  Google Scholar 

  • Fioramonti J, Bueno L (1988) Hormonal control of gut motility in ruminants and non-ruminants and its nutritional implications. Nutr Res Rev 1:169–188

    Article  PubMed  CAS  Google Scholar 

  • Ford APDW, Levine WB, Baxter GS, Harris GC, Eglen RM, Whiting RL (1991) Pharmacological, biochemical and molecular characterization of muscarinic receptors in the guinea-pig ileum: a multidisciplinary study. Mol Neuropharmacol 1:117–127

    CAS  Google Scholar 

  • Gaige S, Abysique A, Bouvier M (2003) Effects of leptin on cat intestinal motility. J Physiol 546:267–277

    Article  PubMed  CAS  Google Scholar 

  • Greenberg GR (1987) Influence of vagal integrity on gastrin and somatostatin release in dogs. Gastroenterology 93:994–1001

    PubMed  CAS  Google Scholar 

  • Greenwood B, Read NW (1986) Neural control of jejunal and ileal motility and transmural potential difference in the ferret. Can J Physiol Pharmacol 64:180–187

    PubMed  CAS  Google Scholar 

  • Grider JR (1994) Interplay of somatostatin, opioid, and GABA neurons in the regulation of the peristaltic reflex. Am J Physiol 267:G696–G701

    PubMed  CAS  Google Scholar 

  • Grider JR (2003) Reciprocal activity of longitudinal and circular muscle during intestinal peristaltic reflex. Am J Physiol 284:G768–G775

    CAS  Google Scholar 

  • Guo HS, Jin Z, Jin ZY, Li ZH, Cui YF, Wang ZY, Xu WX (2003) Comparative study in the effect of C-type natriuretic peptide on gastric motility in various animals. World J Gastroenterol 9:547–552

    PubMed  CAS  Google Scholar 

  • Hansen MB (2003) Neurohumoral control of gastrointestinal motility. Physiol Res 52:1–30

    PubMed  CAS  Google Scholar 

  • Hansen L, Holst JJ (2002) The effects of duodenal peptides on glucagon-like peptide-1 secretion from the ileum. A duodeno-ileal loop? Regul Pept 110:39–45

    Article  PubMed  CAS  Google Scholar 

  • Hasler WL (2006) Small intestinal motility. In: Johnson LR (ed) Physiology of the gastrointestinal tract, 4th edn. Academic Press, Amsterdam, pp 935–964

    Google Scholar 

  • Hebeiss K, Kilbinger H (1999) Cholinergic and GABAergic regulation of nitric oxide synthesis in the guinea pig ileum. Am J Physiol 276:G862–G866

    PubMed  CAS  Google Scholar 

  • Hindmarsh JL, Rose RM (1994) A model for rebound bursting in mammalian neurons. Philos Trans R Soc Lond B Biol Sci 346:129–150

    Article  PubMed  CAS  Google Scholar 

  • Holzer-Petsche U, Moser RL (1996) Participation of nitric oxide in the relaxation of the rat gastric corpus. Naunyn Schmiedebergs Arch Pharmacol 354:348–354

    Article  PubMed  CAS  Google Scholar 

  • Huang J, Zhou H, Mahayadi S, Sriwai W, Lyall V, Murthy KS (2005) Signaling pathways mediating gastrointestinal smooth muscle contraction and MLC20 phosphorylation by motilin receptors. Am J Physiol 288:G23–G31

    CAS  Google Scholar 

  • Husebye E (1999) The patterns of small bowel motility: physiology and implications in organic disease and functional disorders. Neurogastroenterol Motil 11:141–161

    Article  PubMed  CAS  Google Scholar 

  • Jensen TG, Haukland HH, Florholmen J, Jorde R, Burhol PG (1986) Evidence of somatostatin as a humoral modulator of motilin release in man. A study of plasma motilin and somatostatin during intravenous infusion of somatostatin, secretin, cholecystokinin, and gastric inhibitory polypeptide. Scand J Gastroenterol 21:273–280

    Article  Google Scholar 

  • Ji S, Tosaka T, Whitfield BH, Katchman AN, Kandil A, Knollmann BC, Ebert SN (2002) Differential rate responses to nicotine in rat heart: evidence for two classes of nicotinic receptors. J Pharmacol Exp Ther 301:893–899

    Article  PubMed  CAS  Google Scholar 

  • Kamiyama Y, Aihara R, Nakabayashi T, Mochiki E, Asao T, Kuwano H (2007) The peptide hormone xenin induces gallbladder contraction in conscious dogs. Neurogastroenterol Motil 19:233–240

    Article  PubMed  CAS  Google Scholar 

  • Katschinski M, Dahmen G, Reinshagen M, Beglinger C, Koop H, Nustede R, Adler G (1992) Cephalic stimulation of gastrointestinal secretory and motor responses in humans. Gastroenterology 103:383–391

    PubMed  CAS  Google Scholar 

  • Kay AW, Smith AN (1956) The action of atropine and hexamethonium in combination on gastric secretion and motility. Br J Pharmacol 11:231–235

    CAS  Google Scholar 

  • Lester GD, Bolton JR (1994) Effect of dietary composition on abomasal and duodenal myoelectrical activity. Res Vet Sci 57:270–276

    PubMed  CAS  Google Scholar 

  • Ludvigsen E, Stridsberg M, Taylor JE, Culler MD, Oberg K, Janson ET, Sandler S (2007) Regulation of insulin and glucagon secretion from rat pancreatic islets in vitro by somatostatin analogues. Regul Pept 138:1–9

    Article  PubMed  CAS  Google Scholar 

  • Mandl P, Kiss JP (2007) Role of presynaptic nicotinic acetylcholine receptors in the regulation of gastrointestinal motility. Brain Res Bull 72:194–200

    Article  PubMed  CAS  Google Scholar 

  • Matsuo K, Kaibara M, Uezono Y, Hayashi H, Taniyama K, Nakane Y (2002) Involvement of cholinergic neurons in orexin-induced contractions of guinea pig ileum. Eur J Pharmacol 452:105–109

    Article  PubMed  CAS  Google Scholar 

  • Mellander A, Abrahamsson H, Sjövall H (1995) The migrating motor complex–the motor component of a cholinergic enteric secretomotor programme? Acta Physiol Scand 154:329–341

    Article  PubMed  CAS  Google Scholar 

  • Meulemans AL, Eelen JG, Schuurkes JA (1995) NO mediates gastric relaxation after brief vagal stimulation in anesthetized dogs. Am J Physiol 269:G255–G261

    PubMed  CAS  Google Scholar 

  • Mir SS, Mason GR, Ormsbee III HS (1978) Vagal influence on duodenal motor activity. Am J Surg 135:97–101

    Article  PubMed  CAS  Google Scholar 

  • Misra S, Mahavadi S, Grider JR, Murthy KS (2005) Differential expression of Y receptors and signaling pathways in intestinal circular and longitudinal smooth muscle. Regul Pept 125:163–172

    Article  PubMed  CAS  Google Scholar 

  • Ohno K, Hondo M, Sakurai T (2008) Cholinergic regulation of orexin/hypocretin neurons through m(3) muscarinic receptor in mice. J Pharmacol Sci 106:485–491

    Article  PubMed  CAS  Google Scholar 

  • Onaga T, Harada Y, Okamoto K (1998) Pituitary adenylate cyclase-activating polypeptide (PACAP) induces duodenal phasic contractions via the vagal cholinergic nerves in sheep. Regul Pept 77:69–76

    Article  PubMed  CAS  Google Scholar 

  • Onaga T, Mineo H, Kato S (1997) Effect of L364718 on interdigestive pancreatic exocrine secretion and gastroduodenal motility in conscious sheep. Regul Pept 68:139–146

    Article  PubMed  CAS  Google Scholar 

  • Onaga T, Nagashima C, Sakata T (2000) Effect of nitric oxide synthase inhibitors on the temporal coordination of duodenal contraction and pancreatic exocrine secretion in sheep. J Comp Physiol [B] 170:469–479

    CAS  Google Scholar 

  • Ontsouka EC, Bruckmaier RM, Steiner A, Blum JW, Meylan M (2007) Messenger RNA levels and binding sites of muscarinic acetylcholine receptors in gastrointestinal muscle layers from healthy dairy cows. J Recept Signal Transduct Res 27:147–166

    Article  PubMed  CAS  Google Scholar 

  • Ostrom RS, Ehlert FJ (1999) Comparison of functional antagonism between isoproterenol and M2 muscarinic receptors in guinea pig ileum and trachea. J Pharmacol Exp Ther 288:969–976

    PubMed  CAS  Google Scholar 

  • Oyachi N, Lakshmanan J, Ahanya SN, Bassiri D, Atkinson JB, Ross MG (2003) Development of ovine fetal ileal motility: role of muscarinic receptor subtypes. Am J Obstet Gynecol 189:953–957

    Article  PubMed  CAS  Google Scholar 

  • Parkman HP, Pagano AP, Ryan JP (1998) Ranitidine and nizatidine stimulate antral smooth muscle contractility via excitatory cholinergic mechanisms. Dig Dis Sci 43:497–505

    Article  PubMed  CAS  Google Scholar 

  • Plaza MA, Arruebo MP, Murillo MD (1996) Involvement of somatostatin, bombesin and serotonin in the origin of the migrating myoelectric complex in sheep. Life Sci 58:2155–2165

    Article  PubMed  CAS  Google Scholar 

  • Plaza MA, Arruebo MP, Murillo MD (1997) Evidence for the involvement of 5-HT4 receptors in the 5-hydroxytryptamine-induced pattern of migrating myoelectric complex in sheep. Br J Pharmacol 120:1144–1150

    Article  PubMed  CAS  Google Scholar 

  • Rahman M, Lordal M, Al-Saffar A, Hellstrom PM (1994) Intestinal motility responses to neuropeptide gamma in vitro and in vivo in the rat: comparison with neurokinin 1 and neurokinin 2 receptor antagonists. Acta Physiol Scand 151:497–505

    Article  PubMed  CAS  Google Scholar 

  • Rigamonti AE, Scannifio D, Bonomo SM, Cella SG, Sartorio A, Müller EE (2004) Abuse of recombinant human growth hormone: studies in two different dog models. Neuroendocrinology 79:237–246

    Article  PubMed  CAS  Google Scholar 

  • Rigaud D, Dubrasquet M, Accary JP, Laigneau JP, Lewin MJ (1991) Sequential somatostatin and gastrin releases in response to secretin in ray in vivo. Gastroenterol Clin Biol 15:717–722

    PubMed  CAS  Google Scholar 

  • Romański KW (2002) Characteristics and cholinergic control of the ‘minute rhythm’ in ovine antrum, small bowel and gallbladder. J Vet Med A 49:313–320

    Article  Google Scholar 

  • Romański KW (2003a) The rebound excitation triggered by anticholinergic drugs from ovine pyloric antrum, small bowel and gallbladder. J Physiol Pharmacol 54:121–133

    PubMed  Google Scholar 

  • Romański KW (2003b) Character and cholinergic control of myoelectric activity in ovine duodenal bulb: relationships to adjacent regions. Vet Arch 73:1–16

    Google Scholar 

  • Romański KW (2005) The role of muscarinic and nicotinic receptors in the control of the ovine pyloric antral myoelectric response to nutrients during individual phases of the migrating myoelectric complex. Small Rumin Res 57:121–131

    Article  Google Scholar 

  • Romański KW (2006) Changes in amplitude and duration of the spike bursts within phase 3 of the migrating myoelectric complex in the small bowel of fasted, non-fasted and fed sheep. Bull Vet Inst Pulawy 50:239–245

    Google Scholar 

  • Romański KW (2007) Regional differences in the effects of various doses of cerulein upon the small-intestinal migrating motor complex in fasted and non-fasted sheep. J Anim Physiol Anim Nutr (Berl) 91:29–39

    Article  CAS  Google Scholar 

  • Romański KW, Sławuta P (2002) Cholinergic control of pacemaker initiating phase 3 of the migrating myoelectric complex in sheep. J Anim Feed Sci 11:637–650

    Google Scholar 

  • Ruckebusch Y (1989) Gastrointestinal motor functions in ruminants. In: Schultz SG (ed) Handbook of physiology. The gastrointestinal system, vol. 1. American Physiological Society, Bethesda, pp 1225–1282

    Google Scholar 

  • Ruckebusch Y, Bueno L (1975) Electrical activity of the ovine jejunum and changes due to disturbances. Dig Dis 20:1027–1034

    Article  CAS  Google Scholar 

  • Ruckebusch Y, Bueno L (1977) Origin of migrating myoelectric complex in sheep. Am J Physiol 233:E483–E487

    PubMed  CAS  Google Scholar 

  • Ruckebusch Y, Malbert CH, Crichlow EC (1987) Hexamethonium: a probe to assess autonomic nervous system involvement in upper gastrointestinal functions in conscious sheep. Vet Res Commun 11:293–303

    Article  PubMed  CAS  Google Scholar 

  • Ruckebusch Y, Pairet M (1984) Duodenal bulb motor activity in sheep. Zbl Vet Med A 31:401–413

    CAS  Google Scholar 

  • Sandvik AK, Brenna E, Waldum HL (1997) Review article: the pharmacological inhibition of gastric acid secretion–tolerance and rebound. Aliment Pharmacol Ther 11:1013–1018

    Article  PubMed  CAS  Google Scholar 

  • Sarna S, Northcott P, Belbeck L (1982) Mechanism of cycling of migrating myoelectric complexes: effect of morphine. Am J Physiol 242:G588–G595

    PubMed  CAS  Google Scholar 

  • Sarna SK, Lang IM, Gleysteen JJ, Otterson MF (1989) Central vs. enteric neural control of small intestinal migrating motor complexes. In: Singer MV, Goebell H (eds) Nerves and the gastrointestinal tract. MTP, Lancaster, pp 746–752

    Google Scholar 

  • Schang J-C, Kelly KA, Go VLW (1981) Postprandial hormonal inhibition of canine interdigestive motility. Am J Physiol 240:G221–G224

    PubMed  CAS  Google Scholar 

  • Schemann M, Ehrlein H-J (1986) Mechanical characteristics of phase II and phase III of the interdigestive migrating motor complex in dogs. Gastroenterology 91:117–123

    PubMed  CAS  Google Scholar 

  • Schiavone A, Sagrada A, Pagani F, Giachetti A (1989) Role of muscarinic receptor subtypes in the regulation of migrating myoelectric complex in the dog. Gastroenterology 96:116–121

    PubMed  CAS  Google Scholar 

  • Shulkes A, Baldwin GS, Giraud AS (2006) Regulation of gastric acid secretion. In: Johnson LR (ed) Physiology of the gastrointestinal tract, 4th edn. Academic, Amsterdam, pp 1223–1258

    Google Scholar 

  • Skok VI (2002) Nicotinic acetylcholine receptors in autonomic ganglia. Auton Neurosci Basic Clin 97:1–11

    Article  CAS  Google Scholar 

  • Smout AJ (2004) Small intestinal motility. Curr Opin Gastroenterol 20:77–81

    Article  PubMed  Google Scholar 

  • Snedecor GW, Cochran WG (1971) Statistical methods. The Iowa State University Press, Ames

    Google Scholar 

  • Stoffel MH, Monnard CW, Steiner A, Mevissen M, Meylan M (2006) Distribution of muscarinic receptor subtypes and interstitial cells of Cajal in the gastrointestinal tract of healthy dairy cows. Am J Vet Res 67:1992–1997

    Article  PubMed  CAS  Google Scholar 

  • Takahashi T, Yamamura T, Utsunomiya J (1992) Human pancreatic polypeptide, neuropeptide Y and peptide YY reduce the contractile motility by depressing the release of acetylcholine from the myenteric plexus of the guinea pig ileum. Gastroenterol Jpn 27:327–333

    PubMed  CAS  Google Scholar 

  • Tarbrook D (1997) On the rebound. Nurs Times 93:60–62

    PubMed  CAS  Google Scholar 

  • Thomson ABR, Drozdowski L, Jordache C, Thomson BKA, Vermeire S, Clandinin MT, Wild G (2003) Small bowel review. Normal physiology, part 2. Dig Dis Sci 48:1565–1581

    Article  PubMed  CAS  Google Scholar 

  • Tohara K, Uchida Y, Suzuki H, Itoh Z (2000) Initiation of phase III contractions in the jejunum by atropine, hexamethonium and xylocaine in conscious dogs. Neurogastroenterol Motil 12:11–21

    Article  PubMed  CAS  Google Scholar 

  • Torsoli A, Severi C (1993) The neuroendocrine control of gastrointestinal motor activity. J Physiol (Paris) 87:367–374

    CAS  Google Scholar 

  • Vandeweerd M, Janssens J, Vantrappen G, Schippers E, Hostein J, Peeters TL (1988) Local nerve blockade by tetrodotoxin induces ectopic phase 3 of the migrating myoelectric complex in dogs. Scand J Gastroenterol 23:47–52

    Article  PubMed  CAS  Google Scholar 

  • Ward SM, Dalziel HH, Thornbury KD, Westfall DP, Sanders KM (1992) Nonadrenergic, noncholinergic inhibition and rebound excitation in canine colon depend on nitric oxide. Am J Physiol 262:G237–G243

    PubMed  CAS  Google Scholar 

  • Yang H, Kawakubo K, Taché Y (1999) Intracisternal PYY increases gastric mucosal resistance: role of cholinergic, CGRP, and NO pathways. Am J Physiol 277:G555–G562

    PubMed  CAS  Google Scholar 

  • Zonta F, Dondi G, Lucchelli A, Santagostino-Barbone MG, Grana E (1987) Antimuscarinic action of hexamethonium. Med Sci Res 15:513–514

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. W. Romański.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Romański, K.W. Small-intestinal myoelectric activity in sheep: rebound excitation versus phase-3-like activity revealed by hexamethonium and atropine administration. Comp Clin Pathol 18, 383–394 (2009). https://doi.org/10.1007/s00580-009-0813-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00580-009-0813-z

Keywords

Navigation