1 Introduction

Let \(f : {\mathbb {R}}^n \rightarrow {\mathbb {R}}\) be a real polynomial, \(f(0)=0\) and \(K \subset \mathbf {\mathbb {R}}^n\) be a compact set. The well known classical inequality (see Łojasiewicz 1959) say that there exist positive constants \(C,\alpha \) such that

$$\begin{aligned} |f(x)|\ge C\cdot {\text {dist}}(x,f^{-1}(0))^\alpha , \end{aligned}$$
(1)

for all \(x \in K\).

If the set K is non-compact, it may happen that such \(C,\alpha \) do not exist. One may check that it is impossible for polynomials

$$\begin{aligned} f(x,y,z)=x^2 (y^2 +z^4) \quad \text {and} \quad f(x,y)=x(y-1)[y^2+(xy-1)^2]. \end{aligned}$$
(2)

For this reason, some authors modify inequality (1) or its domain.

Hörmander (1958) considered a global version of inequality (1). Precisely, he proved the following

$$\begin{aligned} |f(x)|\cdot (1+|x|)^{\beta }\ge C\cdot {\text {dist}}(x,f^{-1}(0))^\alpha , \end{aligned}$$

for all \(x \in \mathbf {\mathbb {R}}^n\) and some positive constants \(C,\alpha ,\beta \).

In some additional assumptions another global version of inequality (1) was given in Ɖinh (2014) i.e.

$$\begin{aligned} {|}f(x)|^\alpha +|f(x)|^\beta \ge C\cdot {\text {dist}}(x,f^{-1}(0)), x \in \mathbf {\mathbb {R}}^n, \end{aligned}$$

for some positive constants \(C,\alpha ,\beta \).

In turn, Hà and Duc (2010) Ha and Nguyen modified the zero set of polynomial \(f :\mathbf {\mathbb {R}}^2 \rightarrow \mathbf {\mathbb {R}}\) in inequality (1):

$$\begin{aligned} |f(x)|\ge C\cdot {\text {dist}}\left( x,{f^{-1}(0)}^{\mathbf {\mathbb {R}}}\right) ^\alpha , \end{aligned}$$

in some neighborhood at infinity, where \({f^{-1}(0)}^{\mathbf {\mathbb {R}}}\) denotes real approximation at infinity of \(\{x \in \mathbf {\mathbb {C}}^2 :f(x)=0 \}\).

Another modification concerned both a zero set and a domain. Indeed, in Ɖinh (2013) Kurdyka and Le Gal established

$$\begin{aligned} |f(x)|\ge C\cdot {{\text {dist}}(x,Z})^{\alpha } , \, x\in f^{-1}(-\delta ,\delta ) \end{aligned}$$

for some positive constants \(\delta ,C,\alpha \), where \(Z=\{x \in \mathbf {\mathbb {R}}^n :f(x)\cdot \frac{\partial f}{\partial x_1}(x) = 0\}\), and f is a monic polynomial with respect to \(x_1\). In this case constants \(C,\alpha \) can be computed explicitly (see Hà et al. 2015).

If the set \(f^{-1}(0)\) is compact, then

$$\begin{aligned} {\text {dist}}(x,f^{-1}(0))\approx |x|. \end{aligned}$$

In this case for real polynomial \(f :\mathbf {\mathbb {R}}^n \rightarrow \mathbf {\mathbb {R}}\), Gwoździewicz (1998) proved the following

$$\begin{aligned} |f(x)|\ge C\cdot |x|^{d-(d-1)^n}, \, |x|>R, \end{aligned}$$

where \(d=\deg f>2\) and \(C,R>0\).

Kollár (1988) gave similar result for complex polynomial mappings \(F :\mathbf {\mathbb {C}}^n \rightarrow \mathbf {\mathbb {C}}^n\), \(\# F^{-1}(0)<\infty \) i.e.

$$\begin{aligned} |F(x)|\ge C\cdot |x|^{d-d^n}, \, |x|>R, \end{aligned}$$

where \(d=\deg F\) and \(C,R>0\).

In the paper we assume that \(f^{-1}(0)\) is a non-compact set. We keep the form of inequality (1) , but we restrict the domain. Namely, we examine behavior of f:

  1. (i)

    in the neighborhood of the level set \(f^{-1}(0)\) at infinity i.e. in the set

    $$\begin{aligned} \{x \in \mathbf {\mathbb {R}}^n :{\text {dist}}(x,f^{-1}(0))<\varepsilon ,\, |x|>R \}, \end{aligned}$$
  2. (ii)

    or in the set

    $$\begin{aligned} \{x \in \mathbf {\mathbb {R}}^n :{\text {dist}}(x,f^{-1}(0))>R \}. \end{aligned}$$

The lack of the distinction of these cases could lead to a situation that an exponent \(\alpha \) in inequality (1) does not exist in neighborhood at infinity. See for example polynomials (2). In the case (i) and (ii) we give the following definitions.

Let \(f : {\mathbb {R}}^n \rightarrow {\mathbb {R}}\) be a polynomial such that \(f^{-1}(0)\) is a non-compact set. We define the Łojasiewicz exponent of f at infinity as the infimum of the exponents \(l \in {\mathbb {R}}_{+}\) such that

$$\begin{aligned} |f(x)|\ge C\cdot {{\text {dist}}(x,f^{-1}(0))}^l \quad \text {for all } x \text { such that } {\text {dist}}(x,f^{-1}(0))<\varepsilon , \end{aligned}$$
(3)

in some neighborhood of infinity for some \(\varepsilon >0\) and \(C>0\). We denote it by \({\mathcal {L}}_{\infty }(f)\). In cases where such l does not exist, we put

$$\begin{aligned} {\mathcal {L}}_{\infty }(f)=+\infty . \end{aligned}$$

In Ɖinh (2012) authors proved that there are no sequences of the first type if and only if there exist \(C,\delta ,\alpha >0\) such that

$$\begin{aligned} |f(x)|^{\alpha }\ge C\cdot {{\text {dist}}(x,f^{-1}(0))} \quad \text {for all } x \in f^{-1}([-\delta ,\delta ]). \end{aligned}$$

The sequence \((x_k)_{k=1}^{\infty }\subset \mathbf {\mathbb {R}}^n\) is of the first type if \(f(x_k)\rightarrow 0\) and \({\text {dist}}(x,f^{-1}(0))\not \rightarrow 0\).

It is easy to observe that if the last inequality is true for some positive \(C,\delta ,\alpha \), then there exist \(C, \varepsilon , l >0\) such that inequality (3) is true. Hence if there are no sequences of the first type, then \(\mathcal {L}_{\infty }(f)\) exists. However, in some cases \(\mathcal {L}_{\infty }(f)\) exists but there is a sequence of the first type. For example \(f(x,y)=x(y-1)[y^2+(xy-1)^2]\).

In the paper we give an effective formula for the Łojasiewicz exponent at infinity in the class of non-negative and non-degenerate polynomials in terms of the Newton polyhedron (see Sect. 2). This result is a counterpart at infinity of the local result of the paper Bùi and Pham (2014).

2 Preliminaries

We denote by \({\mathbb {R}}_{+}=\{ x \in {\mathbb {R}} : x \ge 0 \}\) and \({\mathbb {Z}}_{+}={\mathbb {Z}}\cap {\mathbb {R}}_{+}\). For \(x=(x_1,\ldots ,x_n) \in {\mathbb {R}}^n\) and \(\alpha =(\alpha _1,\ldots ,\alpha _n) \in {\mathbb {Z}}_{+}^n\), we denote by \(x^{\alpha }\) the monomial \(x_1^{\alpha _1}\ldots \ x_n^{\alpha _n}\) and put \(|\alpha |=\alpha _1+\cdots +\alpha _n\), and \(|x|= \max _{i=1}^n |x_i|\).

Let \(f(x)= \sum \nolimits _{\alpha \in {\mathbb {Z}}_{+}^n} c_{\alpha }x^{\alpha }\). Let us define the set \({\text {supp}}(f)=\{\alpha \in {\mathbb {Z}}_{+}^n: c_{\alpha } \not = 0 \}\) and call it the support of f. Define the set \(\Gamma (f)={\text {conv}}\{{\text {supp}}(f)\} \subset {\mathbb {R}}_{+}^n\) and call it the Newton polyhedron at infinity of f.

Let \(q \in {\mathbb {R}}^n {\setminus } \{0\}\). Define

$$\begin{aligned} \begin{aligned} d(q,\Gamma (f))&=\min \{ \langle q,\alpha \rangle :\alpha \in \Gamma (f) \},\\ \Delta (q,\Gamma (f))&=\{ \alpha \in \Gamma (f): \langle q,\alpha \rangle = d(q,\Gamma (f))\}, \end{aligned} \end{aligned}$$

where \(\langle \cdot \,,\cdot \rangle \) denotes the standard inner product in \({\mathbb {R}}^n \times {\mathbb {R}}^n\). We say that \(\Delta \subset \Gamma (f)\) is a face of \(\Gamma (f)\), if there exists \(q \in {\mathbb {R}}^n {\setminus } \{0\}\) such that \(\Delta =\Delta (q,\Gamma (f))\). By a dimension of a face \(\Delta \) we mean the minimum of the dimensions of the affine subspace containing \(\Delta \). By a vertice of \(\Gamma (f)\) we mean the 0-dimensional faces of \(\Gamma (f)\). We define Newton boundary at infinity of f as the set of faces \(\Delta \subset \Gamma (f)\) such that: if q is defining a vector for \(\Delta \) then \(q_i<0\) for some \(i \in \{1, \ldots , n\}\) and we denote it by \(\Gamma _{\infty }(f)\). Denote by \(\Gamma ^k _{\infty }(f)\) the set of k-dimensional faces of \(\Gamma _{\infty }(f)\), \(k=0, \ldots , n-1\). For \(\Delta \in \Gamma _{\infty }(f)\) we define the polynomial

$$\begin{aligned} f_{\Delta }= \sum _{\alpha \in \Delta } c_{\alpha }x^{\alpha }. \end{aligned}$$

and call it the principal part of f at infinity with respect to face \(\Delta \).

We say that f is Kushnirenko non-degenerate at infinity on the face \(\Delta \in \Gamma _{\infty }(f)\) if the system of equations

$$\begin{aligned} \frac{\partial f_{\Delta }}{\partial x_1}(x)= \cdots =\frac{\partial f_{\Delta }}{\partial x_n}(x)=0 \end{aligned}$$

has no solution in \(({\mathbb {R}} {\setminus } \{0\})^n {\setminus } K\), where \(K\subset {\mathbb {R}}^n\) is a compact set. We say that f is Kushnirenko non-degenerate at infinity (shortly non-degenerate) if f is Kushnirenko non-degenerate at infinity on each face \(\Delta \in \Gamma _{\infty }(f)\).

We say that f is non-negative at infinity (shortly non-negative) if there exists a compact set \(K \subset {\mathbb {R}}^n\) such that \(f(x)\ge 0\) for \(x \in {\mathbb {R}}^n {\setminus } K\).

One of the main tool which we use in the paper is the following

Lemma 1

(Curve Selection Lemma at infinity, Ɖinh (2014), Lemma 1) Let \(A\subset {\mathbb {R}}^n\) be a semi-algebraic set, and let \(F:=(f_1,\ldots ,f_p):{\mathbb {R}}^n\rightarrow {\mathbb {R}}^p\) be a semi-algebraic map. Assume that there exists a sequence \(x^k \in A\) such that \(\lim _{k\rightarrow \infty } |x^k|=\infty \) and \(\lim _{k\rightarrow \infty } F(x^k)=y \in (\overline{{\mathbb {R}}})^p \), where \(\overline{{\mathbb {R}}}:={\mathbb {R}}\cup \{\pm \infty \}\). Then there exists an analytic curve \(\varphi :(0,\epsilon )\rightarrow A \) of the form

$$\begin{aligned} \varphi (t)=a^0 t^q + a^1 t^{q+1} + \ldots \quad , \end{aligned}$$

such that \(a^0 \in {\mathbb {R}}^n{\setminus } \{0\}\), \(q<0\), \(q \in {\mathbb {Z}}\), and \(\lim _{t\rightarrow 0} F(\varphi (t))=y.\)

Let \(A \subset \mathbf {\mathbb {N}}^n\) be a finite set. Put

$$\begin{aligned} N_{A}(x)= \max _{\alpha \in A} |x^{\alpha }|. \end{aligned}$$

Let V be the set of vertices of \(\Gamma (f)\). Denote

$$\begin{aligned} N_{\Gamma }= N_V. \end{aligned}$$

We recall two simple lemmas which will be used in the rest of the paper.

Lemma 2

(Ɖinh (2014), Lemma 11) There exist some subset \(J_1,\ldots ,J_s\) of \(\{1,\ldots ,n\}\), with \(J_i \not \subseteq J_j\) for \(i \not = j\), such that

$$\begin{aligned} N_{\Gamma }^{-1}(0)= \bigcup _{k=1}^s Z_k , \end{aligned}$$

where \(Z_k:=\{x \in {\mathbb {R}}^n: x_j=0, j \in J_k \}\).

For a given subset \(J\subset \{1,\ldots ,n\}\) we define

$$\begin{aligned} {\mathbb {R}}^J := \{\alpha =(\alpha _1,\ldots ,\alpha _n) \in {\mathbb {R}}^n : \alpha _j =0 \quad \text {for} \quad j\not \in J \}. \end{aligned}$$

Lemma 3

(Ɖinh (2014), Lemma 12) Let \(J_1,\ldots ,J_s\) be as in Lemma 2. For every \((j_1,\ldots ,j_s) \in J_1\times \cdots \times J_s\), we have \(V\cap {\mathbb {R}}^J \not = \emptyset \), where \(J=\{j_1,\ldots ,j_s \}\).

3 The Main Theorem

Let \(J_1,\ldots ,J_s\) be as in Lemma 2 and let

$$\begin{aligned} \mathcal {P}= \{I \subset \{1, \ldots ,n \} :I \not = \emptyset \wedge I\cap J_k = \emptyset \quad \text {for some} \quad k \in \{1, \ldots ,s\} \}. \end{aligned}$$

Observe that \(\mathcal {P} \not =\emptyset \) i.e. \(J_{k_0} \not =\{1, \ldots ,n \}\) for some \(k_0 \in \{1, \ldots ,s \}\). Indeed, suppose to the contrary that \(J_{k} =\{1, \ldots ,n \}\) for any \(k \in \{1, \ldots ,s \}\). If \(s>1\), then by Lemma 2 it is not possible. Therefore \(s=1\). Hence \(J_{1} =\{1, \ldots ,n \}\) and \(N_\Gamma ^{-1}(0)=\{0\}\). By Lemma 10

$$\begin{aligned} f^{-1}(0)\cap (\mathbf {\mathbb {R}}^n {\setminus } K) = N_\Gamma ^{-1}(0)\cap (\mathbf {\mathbb {R}}^n {\setminus } K) = \emptyset , \end{aligned}$$

for some compact set K. This gives a contradiction to the assumption that the set \(f^{-1}(0)\) is not compact.

Let us fix \(I \in \mathcal {P}\). We define \(\varphi ^I(x)=(\varphi _1 ^I(x), \ldots ,\varphi _n ^I(x))\), where

$$\begin{aligned} \varphi _i ^I(x)=\Big \{ \begin{array}{ccc} 1&{}\text{ for }&{} i \in I,\\ x_i&{}\text{ for }&{}i \not \in I,\\ \end{array} \end{aligned}$$

for \(i=1, \ldots ,n\) and define \(N_\Gamma ^I=N_\Gamma \circ {\varphi ^I }\).

Observe that

$$\begin{aligned} (N^I_{\Gamma })^{-1}(0)= \bigcup _{k=1}^{s(I)} Z_k^I=\bigcup _{k=1}^{s(I)} \{x \in {\mathbb {R}}^{I'}: x_j=0, j \in J_k^I \}, \quad J_l^I\not \subseteq J_m^I, \, l\not =m, \end{aligned}$$

where \(I'=\{1, \ldots , n \}{\setminus } I\). Put

$$\begin{aligned} \alpha ^I_{\max } = \max \left\{ \alpha ^{\min }_{J}: J \in J^I_1\times \cdots \times J^I_{s(I)} \right\} , \end{aligned}$$

where

$$\begin{aligned} \alpha ^{\min }_{J}:= \min \left\{ |\alpha | : \alpha \in V^{I'} \cap {\mathbb {R}}^J \right\} , \end{aligned}$$

and \(V^{I'}\) denotes the projection of the set V onto \({\mathbb {R}}^{I'}\). Observe that \(N_\Gamma ^I=N_{V^{I^{'}}}\).

Now, we give the main result of the paper.

Theorem 4

Let \(f : {\mathbb {R}}^n \rightarrow {\mathbb {R}}\), \(f(0)=0\), be a non-negative and non-degenerate polynomial. Then

$$\begin{aligned} {\mathcal {L}}_{\infty }(f)= \max \left\{ \alpha ^I_{\max }: I \in \mathcal {P} \right\} . \end{aligned}$$
(4)

Remark 5

One can check that the assertions of the above theorems are also true if we assume Mikhailov–Gindikin non-degeneracy (see Ɖinh (2014), Section 5).

To illustrate the above theorems we give the following

Example 6

Let \( f(x,y,z)=x^8(y^4+z^6). \) It is easy to see that f is non-degenerate and non-negative. We have \(V=\{(8,4,0),(8,0,6)\}\) and

$$\begin{aligned} N_\Gamma (x,y,z)=\max \{x^8 y^4,x^8 z^6\}, \quad (N_\Gamma )^{-1}(0)=\{x=0\}\cup \{y=z=0\}. \end{aligned}$$

Hence \(J_1=\{1\}\), \(J_2=\{2,3\}\).

We calculate \({\mathcal {L}}_{\infty }(f)\). We have \(\mathcal {P}=\{\{1\},\{2\},\{3\},\{2,3\}\}\). For \(I=\{1\}\) we obtain \(I'=\{2,3\}\) and

$$\begin{aligned} N_\Gamma ^I(y,z)=\max \{y^4,z^6\}, \quad (N_\Gamma ^I )^{-1}(0)=\{(0,0)\}, \quad J_1^I=\{2,3\}. \end{aligned}$$

Hence \(J=\{2\}\) or \(J=\{3\}\) and

$$\begin{aligned} \alpha ^{\min }_2=\min \{|\alpha | :\alpha \in \{4,0\}\}=4, \quad \alpha ^{\min }_3=\min \{|\alpha | :\alpha \in \{0,6\}\}=6. \end{aligned}$$

Therefore

$$\begin{aligned} \alpha ^{\{1\}}_{\max }=\max \{4,6\}=6. \end{aligned}$$

Similarly we calculate

$$\begin{aligned} \alpha ^{\{2\}}_{\max }=\alpha ^{\{3\}}_{\max }=\alpha ^{\{2,3\}}_{\max }=8. \end{aligned}$$

Finally we have

$$\begin{aligned} {\mathcal {L}}_{\infty }(f)= \max \left\{ \alpha ^I_{\max }: I \in \mathcal {P} \right\} =\max \{6,8\}=8. \end{aligned}$$

4 Auxiliary Results

The following lemmas will be used in the proof of Lemma 10. The proof of Lemma 7 is a simple transfer of its local counterpart [see Bùi and Pham (2014), Lemma 3.1]. We give it for a convenience of the reader.

Lemma 7

Suppose that f is non-negative polynomial. Then for any face \(\Delta \in \Gamma _{\infty } (f)\) we have \(f_{\Delta }(x) \ge 0 \,\, \text {for} \,\, x \in ({\mathbb {R}}{\setminus } \{0\})^n {\setminus } K\), where K is a compact set.

Proof

Since f is non-negative there exists a compact set K such that \(f(x)\ge 0\) for \(x \in {\mathbb {R}}^n {\setminus } K\). Suppose to the contrary that there exists a face \(\Delta \in \Gamma _{\infty } (f)\) and there exists a point \(x^0 \in ({\mathbb {R}}{\setminus } \{0\})^n {\setminus } K\) such that \(f_{\Delta }(x^0)<0\). Let J be the smallest subset of \(\{1, \ldots ,n \}\) such that \(\Delta \subset {\mathbb {R}}^J\). Hence, there exists a non-zero vector \(a \in {\mathbb {R}}^n\), with \(a_j <0\) for some \(j \in J\) and \(a_j =0\) for \(j \not \in J\) such that

$$\begin{aligned} \Delta =\{\nu \in \Gamma (f)\cap {\mathbb {R}}^J : \langle a,\nu \rangle = d(a,\Gamma (f)) \}. \end{aligned}$$

Define monomial curve \(\varphi :(0,1)\rightarrow {\mathbb {R}}^n\), \(t\mapsto (\varphi _1 (t), \ldots , \varphi _n (t))\), by

$$\begin{aligned} \varphi _j(t)=\Big \{ \begin{array}{ccc} x_j^0 t^{a_j}&{}\text{ for }&{} j \in J,\\ 0&{}\text{ for }&{}j \not \in J.\\ \end{array} \end{aligned}$$

Put \(d:= d(a,\Gamma (f))\). Now, we may write f in the form:

$$\begin{aligned} f(\varphi (t))=f_{\Delta } (x^0) t^d \quad + \quad \text {higher order terms in}\,\, t. \end{aligned}$$

Since \(f_{\Delta }(x^0)<0\), we have

$$\begin{aligned} f(\varphi (t))<0 \quad \text {for all sufficiently small} \,\, t. \end{aligned}$$

This gives a contradiction.

However counterpart of equivalence Bùi and Pham (2014, Lemma 3.2) is not true at infinity. The simple implication is the only one that holds.

Lemma 8

If f is non-negative and non-degenerate, then for any face \(\Delta \in \Gamma _{\infty } (f)\) we have \(f_{\Delta }>0\) on \(({\mathbb {R}}{\setminus } \{0\})^n {\setminus } K\).

Proof

Using Lemma 7 we obtain \(f_{\Delta }(x)\ge 0\) for all \(x \in ({\mathbb {R}}{\setminus } \{0\})^n {\setminus } K\), where K is a suitably chosen compact set. Suppose to the contrary that there exists a point \(x^0 \in ({\mathbb {R}}{\setminus } \{0\})^n {\setminus } K\) such that \(f_{\Delta }(x^0)=0\). Therefore the function \(f_{\Delta }\) attains a local minimum at the point \(x^0\). Hence \( {\text {grad}}f_{\Delta } (x^0)=0\). This gives a contradiction to non-degeneracy of f.

The following lemma will be also applied in the proof of the Lemma 10.

Lemma 9

Gindikin (1974, Lemma 1) Let \(\nu \in \mathbf {\mathbb {R}}_+^n\), \(\nu \in {\text {conv}}\{ \nu ^1, \ldots , \nu ^k \}\). Then

$$\begin{aligned} |x^\nu | \le \sum _{j=1}^k |x^{\nu _j}|. \end{aligned}$$

The next lemma plays a crucial role in the proof of the main theorem. Its proof is a substantially analogous to the proof of Lemma 3.3 of the paper Bùi and Pham (2014). However we prove the second inequality in (5) without assumption of non-degeneracy and non-negativity, using Lemma 9.

Lemma 10

If f is non-negative and non-degenerate then there exist some positive constants \(C_1\) and \(C_2\) such that

$$\begin{aligned} C_1 N_{\Gamma }(x)\le f(x)\le C_2 N_{\Gamma }(x), \quad \text {for all} \quad x \in {\mathbb {R}}^n {\setminus } K, \end{aligned}$$
(5)

for some compact set \(K \subset {\mathbb {R}}^n\).

Proof

We will prove the first inequality. Suppose to the contrary that there exists a sequence \(\{x^k\}\subset {\mathbb {R}}^n\) with \(|x^k|>k\) and such that

$$\begin{aligned} f(x^k)<\frac{1}{k}N_{\Gamma }(x^k) \end{aligned}$$

for all k. By Lemma 1, there exist an analytic curves \(\varphi :(0,\epsilon )\rightarrow \mathbf {\mathbb {R}}^n\), \(t\mapsto (\varphi _1 (t), \ldots ,\varphi _n(t))\) and \(\psi :(0,\epsilon )\rightarrow \mathbf {\mathbb {R}}_{+}\) such that

$$\begin{aligned} |\varphi (t)|\rightarrow \infty , \quad |\psi (t)|\rightarrow 0 \quad \text {as} \quad t\rightarrow 0^{+}, \end{aligned}$$
(6)

and

$$\begin{aligned} f(\varphi (t))<\psi (t) N_{\Gamma }(\varphi (t)). \end{aligned}$$
(7)

Let \(J=\{j : \varphi _j \not \equiv 0 \}\subset \{1, \ldots ,n \}\). For \(j \in J\) we can expand coordinate function \(\varphi _j\), say

$$\begin{aligned} \varphi _j(t)= x_j^0 t^{a_j} \quad + \quad \text {higher order terms in}\,\, t, \end{aligned}$$

where \(x_j^0 \not =0\) and \(a_j \in \mathbb {N}\). From Condition (6), there exists \(j \in J\) such that \(a_j<0\). If \(\Gamma (f)\cap {\mathbb {R}}^{J}=\emptyset \), then for any vertex \(\alpha \in V\), there exists \(j \not \in J\) such that \(\alpha _j>0\) (\(V \subset \Gamma (f)\)) and hence \((\varphi _j (t))^{\alpha _j}\equiv 0\). Then \((\varphi (t))^{\alpha _j}\equiv 0\). Hence

$$\begin{aligned} N_{\Gamma }(\varphi (t))= \max _{\alpha \in V} |\varphi (t)^{\alpha }|\equiv 0. \end{aligned}$$

This gives a contradiction to (7).

Therefore, \(\Gamma (f)\cap {\mathbb {R}}^{J} \not =\emptyset \). Put

$$\begin{aligned} d&=\min \left\{ \sum _{j \in J} a_j \alpha _j : \alpha \in \Gamma (f)\cap {\mathbb {R}}^J \right\} , \\ \Delta&=\left\{ \alpha \in \Gamma (f)\cap {\mathbb {R}}^J : \sum _{j \in J} a_j \alpha _j = d \right\} . \end{aligned}$$

We can write

$$\begin{aligned} f(\varphi (t))=f_{\Delta } (x^0) t^d \quad + \quad \text {higher order terms in}\,\, t, \end{aligned}$$

where \(x^0=(x_1^0, \ldots ,x_n^0)\) and \(x_j^0=1\) for \(j \not \in J\). We will show that \(f_{\Delta }(x^0)>0\). Indeed, since f is non-negative and non-degenerate, it follows from Lemma 8 we have that \(f_{\Delta }(x)>0\) for \(x \in ({\mathbb {R}}{\setminus } \{0\})^n {\setminus } K\), where K is a suitably chosen compact set. Therefore by quasi-homogeneity of \(f_{\Delta }\) we have

$$\begin{aligned} f_{\Delta }(x^0)=\frac{f_{\Delta }((s^{a_j} x_{j}^0)_{j \in J})}{s^d}>0, \end{aligned}$$

where s is a positive number such that \(s^{a_j} \cdot x_j^0\) is large enough for some \(j \in J\). Hence

$$\begin{aligned} f(\varphi (t)) \quad \text {and} \quad t^d \end{aligned}$$
(8)

are of the same order if \(t\rightarrow 0^{+}\).

On the other hand, we have

$$\begin{aligned} N_{\Gamma }(\varphi (t))=\max _{\alpha \in V} |\varphi (t)^{\alpha }|= \max _{\alpha \in \Delta } |{(x^0)}^{\alpha }|t^d \quad + \quad \text {higher order terms in}\,\, t. \end{aligned}$$

Hence and by (8) we have a contradiction to (7).

Now we prove the second inequality in (b). Let \(|x|\ge R\ge 1\), where R is sufficiently large. By Lemma 9 we have

$$\begin{aligned} f(x)&=\sum _{\nu \in {\text {supp}}f} c_\nu x^\nu \le \max _{\nu \in {\text {supp}}f}|c_\nu |\cdot \sum _{\nu \in {\text {supp}}f} |x^\nu |\le \\&\le C_2\cdot \max _{\nu \in V} |x^\nu |=C_2\cdot N_\Gamma (x), \end{aligned}$$

where \(C_2\) is a some positive constant.\(\square \)

Let \(A\subset \mathbf {\mathbb {N}}^n\) be a finite set. Put

$$\begin{aligned} {\mathcal {L}} (N_A)= \inf \{ l \in {\mathbb {R}}_{+} :\exists _{C>0} |N_A(x)|\ge C\cdot {{\text {dist}}(x,N_A^{-1}(0))}^l,\, {\text {dist}}(x,N_A^{-1}(0))<1 \}. \end{aligned}$$

Now we give an effective formula to compute \(\mathcal {L}(N_A)\).

Proposition 11

We have

$$\begin{aligned} {\mathcal {L}} (N_A)= \max \left\{ \alpha ^{\min }_{J}: J \in J_1\times \cdots \times J_s \right\} , \end{aligned}$$

where

$$\begin{aligned} \alpha ^{\min }_{J}:= \min \left\{ |\alpha | : \alpha \in A \cap {\mathbb {R}}^J \right\} . \end{aligned}$$

Proof

We first show that \({\mathcal {L}} (N_A)\le \max \{ \alpha ^{\min }_{J} : J \in J_1\times \cdots \times J_s \}\). Let us fix an arbitrary \(x \in \mathbf {\mathbb {R}}^n\) such that

$$\begin{aligned} {\text {dist}}(x,N_A ^{-1}(0))=\delta <1. \end{aligned}$$

It is easy to check that

$$\begin{aligned} {\text {dist}}(x,N_A ^{-1}(0))=\min _{k=1}^s \max _{j \in J_k} |x_j|. \end{aligned}$$

Hence

$$\begin{aligned} \max _{j \in J_k} |x_j|\ge \delta \quad \text {for any} \quad k=1, \ldots ,s. \end{aligned}$$

This means that for each \(k=1, \ldots ,s\) there exists \(j_k \in J_k\) such that

$$\begin{aligned} |x_{j_k}|\ge \delta . \end{aligned}$$

Put \(J=\{j_1, \ldots ,j_s\}\). By Lemma 3 we have that \(A\cap {\mathbb {R}}^J \not =\emptyset \). Let us choose \(\alpha = (\alpha _1, \ldots ,\alpha _s) \in A\cap {\mathbb {R}}^J \) such that

$$\begin{aligned} |\alpha |=\alpha ^{\min }_{J}. \end{aligned}$$

Hence

$$\begin{aligned} N_A (x)= & {} \max \{ |x_{j_1}^{\alpha _j} \ldots x_{j_s}^{\alpha _s}|, \ldots \}\ge \delta ^{\alpha _j} \ldots \delta ^{\alpha _s}\\= & {} \delta ^{\alpha ^{\min }_{J}} \ge \delta ^{\max \{ \alpha ^{\min }_{J} : J \in J_1\times \cdots \times J_s \}}\\= & {} {{\text {dist}}(x,N_A ^{-1}(0))}^{\max \{ \alpha ^{\min }_{J} : J \in J_1\times \cdots \times J_s \}}. \end{aligned}$$

This means that \({\mathcal {L}} (N_A)\le \max \{ \alpha ^{\min }_{J} : J \in J_1\times \cdots \times J_s \}\).

Now, we show that \({\mathcal {L}} (N_A)\ge \max \{ \alpha ^{\min }_{J} : J \in J_1\times \cdots \times J_s \}\).

Let \((j_1, \ldots ,j_s)\in J_1\times \cdots \times J_s \) be such that realized the above maximum and let \(J \subset \{1, \ldots ,n\}\) be the minimal set such that \(j_k \in J\), \(k=1, \ldots ,s\). Put \(A_J = \mathbf {\mathbb {R}}^{J}\cap A\). By Lemma 3 we have that \(A_J \not =\emptyset \). Take the following parametrization \(\varphi (t) = (\varphi _1(t), \ldots ,\varphi _n(t))\), \(|t|<1\), where

$$\begin{aligned} \varphi _i (t)= {\left\{ \begin{array}{ll} t&{}\text {for}\quad i \in J\\ 0&{}\text {for}\quad i \not \in J, \end{array}\right. } \end{aligned}$$
(9)

for \(i =1, \ldots ,n\). We have

$$\begin{aligned} N_A (\varphi (t))= \max _{\nu \in A_J} |\varphi (t)^\nu | = |t|^{\min \{ |\nu | :\nu \in A_J \}}=|t|^{ \alpha ^{\min }_{J}}={\text {dist}}(\varphi (t),N_A ^{-1}(0))^{\alpha ^{\min }_{J}}. \end{aligned}$$

Hence \({\mathcal {L}} (N_A)\ge \alpha ^{\min }_{J}.\) This ends the proof.

One can observe that the above proof in comparison with the proof of (Bùi and Pham 2014, Proposition 3.1) is more elementary.

5 Proof of the Main Theorem

Now, we are ready to give the proof of the main result.

Proof of Theorem 4

Since f is non-negative and non-degenerate polynomial, then by Lemma 10 there exist some positive constants \(C_1\) and \(C_2\) such that

$$\begin{aligned} C_1 N_{\Gamma }(x)\le f(x)\le C_2 N_{\Gamma }(x), \end{aligned}$$
(10)

for all \(x \in {\mathbb {R}}^n {\setminus } K\) and some compact set \(K \subset {\mathbb {R}}^n\). Hence

$$\begin{aligned} f^{-1}(0)\cap (\mathbf {\mathbb {R}}^n {\setminus } K)=N_{\Gamma }^{-1}(0)\cap (\mathbf {\mathbb {R}}^n {\setminus } K). \end{aligned}$$
(11)

We will show that there exist some positive constants \(D_1\) and \(D_2\) such that

$$\begin{aligned} D_1 {\text {dist}}(x,N_{\Gamma }^{-1}(0))\le {\text {dist}}(x,f^{-1}(0))\le D_2 {\text {dist}}(x,N_{\Gamma }^{-1}(0)), \end{aligned}$$

for all \(x \in {\mathbb {R}}^n {\setminus } K_1\) and some compact set \(K_1 \subset {\mathbb {R}}^n\), \(K\subset K_1\). First, observe that

$$\begin{aligned} {\text {dist}}(x,K)\le |x|\le 2{\text {dist}}(x,K),\quad x \in {\mathbb {R}}^n {\setminus } K_1, \end{aligned}$$
(12)

for some compact set \(K_1 \subset {\mathbb {R}}^n\), \(K\subset K_1\). By (11), (12) and since \(0 \in N_{\Gamma }^{-1}(0)\) we have

$$\begin{aligned} {\text {dist}}(x,f^{-1}(0))= & {} \min \{{\text {dist}}(x,f^{-1}(0){\setminus } K), {\text {dist}}(x,f^{-1}(0)\cap K)\}\\\ge & {} \min \{{\text {dist}}(x,N_{\Gamma }^{-1}(0){\setminus } K), {\text {dist}}(x,K)\}\\\ge & {} \min \{{\text {dist}}(x,N_{\Gamma }^{-1}(0)), \frac{1}{2}|x|\}\\\ge & {} \min \{{\text {dist}}(x,N_{\Gamma }^{-1}(0)), \frac{1}{2}{\text {dist}}(x,N_{\Gamma }^{-1}(0))\}\\= & {} \frac{1}{2} {\text {dist}}(x,N_{\Gamma }^{-1}(0)), \end{aligned}$$

for \(x \in {\mathbb {R}}^n {\setminus } K_1\). Analogously, by (11), (12) and since \(0 \in f^{-1}(0)\) we get

$$\begin{aligned} {\text {dist}}(x,N_{\Gamma }^{-1}(0))\ge \frac{1}{2} {\text {dist}}(x,f^{-1}(0)), \end{aligned}$$

for \(x \in {\mathbb {R}}^n {\setminus } K_1\). Summing up we obtain

$$\begin{aligned} \frac{1}{2} {\text {dist}}(x,N_{\Gamma }^{-1}(0))\le {\text {dist}}(x,f^{-1}(0))\le 2 {\text {dist}}(x,N_{\Gamma }^{-1}(0)), \end{aligned}$$
(13)

for \(x \in {\mathbb {R}}^n {\setminus } K_1\). By (10) and (13) it follows that

$$\begin{aligned} {\mathcal {L}}_{\infty }(N_\Gamma )={\mathcal {L}}_{\infty }(f). \end{aligned}$$
(14)

By (14), it is enough to prove formula (4) for \(N_\Gamma \). We first show that

$$\begin{aligned} {\mathcal {L}}_{\infty }(N_\Gamma )\le \max \left\{ {\mathcal {L}}(N_{\Gamma }^I): I \in \mathcal {P} \right\} . \end{aligned}$$
(15)

Let \(x \in \mathbf {\mathbb {R}}^n {\setminus } K\), where K is the same as in Lemma 10 and \({\text {dist}}(x,N_{\Gamma }^{-1}(0))<\varepsilon <1\). It can be assumed that

$$\begin{aligned} \{x \in \mathbf {\mathbb {R}}^n :|x|<1 \}\subset K. \end{aligned}$$

Let \(I \not =\emptyset \) be such that

$$\begin{aligned} |x_i|\ge 1 , i \in I \quad \text {and} \quad |x_i|<1 , i \not \in I. \end{aligned}$$

It is easy to check that \(I \in \mathcal {P}\). Since

$$\begin{aligned} (N_{\Gamma }^I)^{-1}(0)=N_{\Gamma }^{-1}(0)\cap \{x \in \mathbf {\mathbb {R}}^n :x_i=1 \quad \text {for} \quad i \in I \} \subset N_{\Gamma }^{-1}(0), \end{aligned}$$

we have

$$\begin{aligned} {\text {dist}}(x_I,(N_{\Gamma }^I)^{-1}(0))\ge {\text {dist}}(x_I,N_{\Gamma }^{-1}(0)). \end{aligned}$$
(16)

It is easy to check that

$$\begin{aligned} {\text {dist}}(x_I,N_{\Gamma }^{-1}(0))={\text {dist}}(x,N_{\Gamma }^{-1}(0)). \end{aligned}$$
(17)

By (16), (17) we obtain

$$\begin{aligned} |N_\Gamma (x)|\ge & {} |N_\Gamma ^I (x_I)|\ge C_I {\text {dist}}(x_I,(N_{\Gamma }^I)^{-1}(0))^{{\mathcal {L}}(N_{\Gamma }^I)}\\\ge & {} C_I {\text {dist}}(x_I,N_{\Gamma }^{-1}(0))^{{\mathcal {L}}(N_{\Gamma }^I)}= C_I {\text {dist}}(x,N_{\Gamma }^{-1}(0))^{{\mathcal {L}}(N_{\Gamma }^I)}\\\ge & {} \min \{C_I :I \in \mathcal {P} \} {\text {dist}}(x,N_{\Gamma }^{-1}(0))^{\max \{{\mathcal {L}}(N_{\Gamma }^I) :I \in \mathcal {P}\}}. \end{aligned}$$

This gives (15).

Now we show that

$$\begin{aligned} {\mathcal {L}}_{\infty }(N_\Gamma ) \ge \max \left\{ {\mathcal {L}}(N_{\Gamma }^I): I \in \mathcal {P} \right\} . \end{aligned}$$
(18)

First we choose \(I \in \mathcal {P}\) such that realizes the above maximum. Take the parametrization \(\varphi :\mathbf {\mathbb {R}}{\setminus } \{0\} \rightarrow \mathbf {\mathbb {R}}^{\{1, \ldots ,n \} {\setminus } I}\) defined by formula (9) such that it realizes \({\mathcal {L}}(N_\Gamma ^I)\). Let \(\varepsilon >0\). Let \((\varphi _\varepsilon )_i :\mathbf {\mathbb {R}}{\setminus } \{0\} \rightarrow \mathbf {\mathbb {R}}^n\) be defined in the following way

$$\begin{aligned} (\varphi _\varepsilon (t))_i =\Big \{ \begin{array}{ccc} \varphi _i (t)&{}\text{ for }&{} i \not \in I,\\ t^{-\varepsilon }&{}\text{ for }&{}i \in I,\\ \end{array} \end{aligned}$$

Observe that

$$\begin{aligned} {\text {dist}}(\varphi _\varepsilon (t),N_{\Gamma }^{-1}(0))=t. \end{aligned}$$

Indeed, let \(K=\{k \in \{1, \ldots ,s \} :J_k \cap I = \emptyset \}=\{k_1, \ldots , k_r \}\). We have

$$\begin{aligned} {\text {dist}}(\varphi _\varepsilon (t),N_{\Gamma }^{-1}(0))= & {} \min _{k=1}^s \max _{j \in J_k} |\varphi _{\varepsilon ,j} (t)|\\= & {} \min _{k=1}^s \{ \max \{ \max _{j \in J_k \cap I} |\varphi _{\varepsilon ,j} (t)|, \max _{j \in J_k {\setminus } I} |\varphi _{\varepsilon ,j} (t)| \}\}\\= & {} \min _{k=1}^s \{ \max \{|t^{-\varepsilon }|, \max _{j \in J_k {\setminus } I} |\varphi _{\varepsilon ,j} (t)| \}\} = \min _{k \in K} \{ \max _{j \in J_k} |\varphi _{j} (t)| \}. \end{aligned}$$

Now, it is enough to show that

$$\begin{aligned} \min _{k \in K} \{ \max _{j \in J_k} |\varphi _{j} (t)| \}=t. \end{aligned}$$
(19)

Observe that

$$\begin{aligned} (N_{\Gamma }^I)^{-1}(0)= & {} N_{\Gamma }^{-1}(0)\cap \{x \in \mathbf {\mathbb {R}}^n :x_i=1 , \, i \in I \}\\= & {} \bigcup _{k=1}^s Z_k \cap \{x \in \mathbf {\mathbb {R}}^n :x_i=1 ,\, i \in I \}\\= & {} \bigcup _{k=1}^s \{x \in \mathbf {\mathbb {R}}^n :x_i=0 \,\, \text {for} \,\, i \in J_k , \, x_i=1 \,\, \text {for} \,\, i \in I\}\\= & {} \bigcup _{k \in K} \{x \in \mathbf {\mathbb {R}}^n :x_i=0 \,\, \text {for} \,\, i \in J_k , \, x_i=1 \,\, \text {for} \,\, i \in I\}\\= & {} \bigcup _{l=1}^r \{x \in \mathbf {\mathbb {R}}^n :x_i=0 \,\, \text {for} \,\, i \in J_{k_l} , \, x_i=1 \,\, \text {for} \,\, i \in I\}. \end{aligned}$$

Let \((j_{k_1}, \ldots ,j_{k_r})\in J_{k_1}\times \cdots \times J_{k_r}\), \(J=\{j_{k_1}, \ldots ,j_{k_r}\}\) be the same as in definition of \(\varphi \). It is obvious that \(J_{k_l} \cap J \not = \emptyset \), \(l=1, \ldots ,r\). Therefore

$$\begin{aligned} \max _{j \in J_{k_l}} |\varphi _{j} (t)| =t, \quad l=1, \ldots , r. \end{aligned}$$

This gives (19).

Let \(\nu _I\) be the system of these coordinates of \(\nu \) which are in I and \(\nu _{I'}\) - system of the remaining ones. We have

$$\begin{aligned} |(N_\Gamma \circ \varphi _\varepsilon )(t)|= & {} \max _{\nu \in V} |\varphi _\varepsilon (t)^\nu |=\max _{\nu \in V} \{|t^{-\varepsilon }|^{\nu _I} \cdot | \varphi _{I'} (t)^{\nu _{I'}}|\} \\\le & {} |t^{-\varepsilon }|^{\max _{\nu \in V} |\nu _I|} \cdot \max _{\nu \in V} | \varphi _{I'} (t)^{\nu _{I'}}|=|t^{-\varepsilon }|^{\max _{\nu \in V} |\nu _I|} \cdot N_\Gamma (\varphi (t))\\= & {} |t^{-\varepsilon }|^{\max _{\nu \in V} |\nu _I|} \cdot |t|^{\mathcal {L}( N_\Gamma ^I)}=|t|^{\mathcal {L}( N_\Gamma ^I)-\varepsilon \max _{\nu \in V} |\nu _I|}\\= & {} {\text {dist}}(\varphi _\varepsilon (t),N_{\Gamma }^{-1}(0))^{\mathcal {L}( N_\Gamma ^I)-\varepsilon \max _{\nu \in V} |\nu _I|}. \end{aligned}$$

It can be assumed that \(\varepsilon \) is such that \(\mathcal {L}( N_\Gamma ^I)-\varepsilon \max _{\nu \in V} |\nu _I| >0\). Hence

$$\begin{aligned} {\mathcal {L}}_{\infty }(N_\Gamma )\ge \mathcal {L}( N_\Gamma ^I)-\varepsilon \max _{\nu \in V} |\nu _I|. \end{aligned}$$

By arbitrary choice of \(\varepsilon \) and I we obtain (18). Summing up we obtain

$$\begin{aligned} {\mathcal {L}}_{\infty }(N_\Gamma ) = \max \left\{ {\mathcal {L}}(N_{\Gamma }^I): I \in \mathcal {P} \right\} . \end{aligned}$$

By Proposition 11 we have \({\mathcal {L}}(N_{\Gamma }^I)=\alpha ^I_{\max }\) and hence we get the formula (4) for \(N_\Gamma \). This ends the proof. \(\square \)

6 Formula of Exponent of Growth

We also define the exponent of growth of fat infinity as the supremum of the exponents \(l \in {\mathbb {R}}_{+}\) such that

$$\begin{aligned} |f(x)|\ge C\cdot {{\text {dist}}(x,f^{-1}(0))}^l \quad \text {for all } x \text { such that } {\text {dist}}(x,f^{-1}(0))>R, \end{aligned}$$

in some neighborhood of infinity for some \(R >0\) and \(C>0\). We denote it by \({\mathcal {E}}_{\infty }(f)\). In the case that such l does not exist, we put

$$\begin{aligned} {\mathcal {E}}_{\infty }(f)=-\infty . \end{aligned}$$

The second result is a formula of exponent of growth of polynomial f at infinity.

Theorem 12

Let \(f : {\mathbb {R}}^n \rightarrow {\mathbb {R}}\) be a non-negative and non-degenerate polynomial. Then

$$\begin{aligned} {\mathcal {E}}_{\infty }(f)= \min \left\{ \alpha ^{\max }_{J}: J \in J_1\times \cdots \times J_s \right\} , \end{aligned}$$

where

$$\begin{aligned} \alpha ^{\max }_{J}:= \max \left\{ |\alpha | : \alpha \in V \cap {\mathbb {R}}^J \right\} . \end{aligned}$$

Proof

By Lemma 10 we have \({\mathcal {E}}_{\infty }(f)={\mathcal {E}}_{\infty }(N_\Gamma )\). Therefore it is enough to prove this formula for \(N_\Gamma \). We first show that \({\mathcal {E}}_{\infty }(N_\Gamma ) \ge \min \left\{ \alpha ^{\max }_{J}: J \in J_1\times \cdots \times J_s \right\} \). Let us fix arbitrary \(x \in \mathbf {\mathbb {R}}^n {\setminus } K\) such that

$$\begin{aligned} {\text {dist}}(x,N_\Gamma ^{-1}(0))=\delta >1. \end{aligned}$$

Since

$$\begin{aligned} {\text {dist}}(x,N_\Gamma ^{-1}(0))=\min _{k=1}^s \max _{j \in J_k} |x_j|, \end{aligned}$$

hence we get

$$\begin{aligned} \max _{j \in J_k} |x_j|\ge \delta \quad \text {for any} \quad k=1, \ldots ,s. \end{aligned}$$

This means that for each \(k=1, \ldots ,s\) there exists \(j_k \in J_k\) such that

$$\begin{aligned} |x_{j_k}|\ge \delta . \end{aligned}$$

Put \(J=\{j_1, \ldots ,j_s\}\). By Lemma 3 we have \(V\cap {\mathbb {R}}^J \not =\emptyset \). Let us choose \(\alpha = (\alpha _1, \ldots ,\alpha _s) \in V\cap {\mathbb {R}}^J \) such that

$$\begin{aligned} |\alpha |=\alpha ^{\max }_{J}. \end{aligned}$$

Hence

$$\begin{aligned} N_\Gamma (x)= & {} \max \{ |x_{j_1}^{\alpha _j} \ldots x_{j_s}^{\alpha _s}|, \ldots \}\ge \delta ^{\alpha _j} \ldots \delta ^{\alpha _s}\\= & {} \delta ^{\alpha ^{\max }_{J}} \ge \delta ^{\min \{ \alpha ^{\max }_{J} : J \in J_1\times \cdots \times J_s \}}\\= & {} {{\text {dist}}(x,N_\Gamma ^{-1}(0))}^{\min \{ \alpha ^{\max }_{J} : J \in J_1\times \cdots \times J_s \}}. \end{aligned}$$

This means that \({\mathcal {E}}_{\infty }(N_\Gamma ) \ge \min \left\{ \alpha ^{\max }_{J}: J \in J_1\times \cdots \times J_s \right\} \).

Now, we show that \({\mathcal {E}}_{\infty }(N_\Gamma ) \le \min \left\{ \alpha ^{\max }_{J}: J \in J_1\times \cdots \times J_s \right\} \).

Let \((j_1, \ldots ,j_s)\in J_1\times \cdots \times J_s \) and let \(J \subset \{1, \ldots ,n\}\) be the minimal set such that \(j_k \in J\), \(k=1, \ldots ,s\). Put \(V_J = \mathbf {\mathbb {R}}^{J}\cap V\). By Lemma 3 we have that \(V_J \not =\emptyset \). Take the following parametrization \(\varphi (t) = (\varphi _1(t), \ldots ,\varphi _n(t))\), \(|t|>1\), where

$$\begin{aligned} \varphi _i (t)={\left\{ \begin{array}{ll} t&{}\text {for}\quad i \in J\\ 0&{}\text {for}\quad i \not \in J, \end{array}\right. } \end{aligned}$$

for \(i =1, \ldots ,n\). We have

$$\begin{aligned} N_\Gamma (\varphi (t))= \max _{\nu \in V_J} |\varphi (t)^\nu | = |t|^{\max \{ |\nu | :\nu \in V_J \}}=|t|^{ \alpha ^{\max }_{J}}={\text {dist}}(\varphi (t),N_\Gamma ^{-1}(0))^{\alpha ^{\max }_{J}}. \end{aligned}$$

Hence \({\mathcal {E}}_{\infty }(N_\Gamma )\le \alpha ^{\max }_{J}\) and by arbitrary choice of \((j_1, \ldots ,j_s)\in J_1\times \cdots \times J_s \) we have

$$\begin{aligned} {\mathcal {E}}_{\infty }(N_\Gamma ) \le \min \left\{ \alpha ^{\max }_{J}: J \in J_1\times \cdots \times J_s \right\} . \end{aligned}$$

This ends the proof.\(\square \)

Example 13

Let again \( f(x,y,z)=x^8(y^4+z^6) \) and \(V=\{(8,4,0),(8,0,6)\}\) and \(J_1=\{1\}\), \(J_2=\{2,3\}\).

We calculate \({\mathcal {E}}_{\infty }(f)\). Take \(J \in J_1\times J_2\). Then \(J=\{1,2\}\) or \(J=\{1,3\}\). We calculate

$$\begin{aligned} \alpha ^{\max }_{\{1,2\}}=\max \{|\alpha | :\alpha \in V \cap \mathbf {\mathbb {R}}^{\{1,2\}}\}=\max \{|\alpha | :\alpha \in \{(8,4)\}\}=12 \end{aligned}$$

and

$$\begin{aligned} \alpha ^{\max }_{\{1,3\}}=\max \{|\alpha | :\alpha \in V \cap \mathbf {\mathbb {R}}^{\{1,3\}}\}=\max \{|\alpha | :\alpha \in \{(8,6)\}\}=14. \end{aligned}$$

Finally

$$\begin{aligned} {\mathcal {E}}_{\infty }(f)=\min \left\{ \alpha ^{\max }_{\{1,2\}},\alpha ^{\max }_{\{1,3\}}\right\} =\min \{12,14\}=12. \end{aligned}$$