Skip to main content
Log in

Laminar-turbulent reactive flows in porous media

  • Published:
Bulletin of the Brazilian Mathematical Society, New Series Aims and scope Submit manuscript

Abstract

We state some recent results concerning liquid-vapor phase transitions for a fluid flow through a porousmedium. The focus is on the friction exerted by the porous medium, which is modeled in such a way to include both laminar and turbulent flows. In this way we obtain a hyperbolic system of three balance laws with a forcing term that is discontinuous in the state variables. Existence, uniqueness and qualitative behavior of traveling waves is proved by a novel regularization technique.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. D. Amadori, L. Gosse and G. Guerra. Godunov-type approximation for a general resonant balance law with large data. J. Differential Equations, 198(2) (2004), 233–274.

    Article  MathSciNet  MATH  Google Scholar 

  2. E. Barbera, C. Currò and G. Valenti. A hyperbolic model for the effects of urbanization on air pollution. Appl. Math. Model., 34(8) (2010), 2192–2202.

    Article  MathSciNet  MATH  Google Scholar 

  3. A. Corli and H. Fan. A hyperbolic model for phase transitions in porous media. In: F. Ancona, A. Bressan, P. Marcati, and A. Marson (Eds). Hyperbolic Problems: Theory, Numerics, Applications. Amer. Inst. Math. Sci., (2014), 475–482.

    Google Scholar 

  4. A. Corli and H. Fan. Phase transitions for laminar-turbulent flows in a pipeline or through porous media. Commun. Inf. Syst., 13(2) (2013), 151–181.

    MathSciNet  MATH  Google Scholar 

  5. A. Corli and H. Fan. Traveling waves of phase transitions in porous media. Appl. Anal., 92 (2013), 1217–1240.

    Article  MathSciNet  MATH  Google Scholar 

  6. A. Corli and H. Fan. Traveling waves in porous media with phase-dependent damping. Nonlinear Anal. Real World Appl., 19 (2014), 135–149.

    Article  MathSciNet  MATH  Google Scholar 

  7. C. Currò and D. Fusco. Discontinuous travelling wave solutions for a class of dissipative hyperbolic models. Atti Accad. Naz. Lincei Cl. Sci. Fis. Mat. Natur. Rend. Lincei (9) Mat. Appl., 16(1) (2005), 61–71.

    MathSciNet  MATH  Google Scholar 

  8. H. Fan. Traveling waves, Riemann problems and computations of a model of the dynamics of liquid/vapor phase transitions. J. Differential Equations, 150(2) (1998), 385–437.

    Article  MathSciNet  MATH  Google Scholar 

  9. G. Guerra. Well-posedness for a scalar conservation law with singular nonconservative source. J. Differential Equations, 206(2) (2004), 438–469.

    Article  MathSciNet  MATH  Google Scholar 

  10. J. Hong and B. Temple. The generic solution of the Riemann problem in a neighborhood of a point of resonance for systems of nonlinear balance laws. Methods Appl. Anal., 10(2) (2003), 279–294.

    MathSciNet  MATH  Google Scholar 

  11. J. Hong and B. Temple. A bound on the total variation of the conserved quantities for solutions of a general resonant nonlinear balance law. SIAM J. Appl. Math., 64(3) (2004), 819–857.

    Article  MathSciNet  MATH  Google Scholar 

  12. E. Isaacson and B. Temple. Convergence of the 2×2 Godunovmethod for a general resonant nonlinear balance law. SIAM J. Appl. Math., 55(3) (1995), 625–640.

    Article  MathSciNet  MATH  Google Scholar 

  13. M. Luskin. On the existence of global smooth solutions for a model equation for fluid flow in a pipe. J. Math. Anal. Appl., 84(2) (1981), 614–630.

    Article  MathSciNet  MATH  Google Scholar 

  14. M. Luskin and B. Temple. The existence of a global weak solution to the nonlinear waterhammer problem. Comm. Pure Appl. Math., 35(5) (1982), 697–735.

    Article  MathSciNet  MATH  Google Scholar 

  15. G. Pettet, D. McElwain and J. Norbury. Lotka-volterra equations with chemotaxis; walls, barriers and travelling waves. IMA J. Math. Appl. Med. Biol., 17 (2000), 395–413.

    Article  MATH  Google Scholar 

  16. F.M. White. Fluid Mechanics. McGraw-Hill, Boston, fourth edition (2003).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andrea Corli.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Corli, A., Fan, H. Laminar-turbulent reactive flows in porous media. Bull Braz Math Soc, New Series 47, 267–276 (2016). https://doi.org/10.1007/s00574-016-0137-y

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00574-016-0137-y

Keywords

Mathematical subject classification

Navigation