Skip to main content
Log in

The Maslov cycle as a Legendre singularity and projection of a wavefront set

  • Published:
Bulletin of the Brazilian Mathematical Society, New Series Aims and scope Submit manuscript

Abstract

A Maslov cycle is a singular variety in the lagrangian grassmannian Λ(V) of a symplectic vector space V consisting of all lagrangian subspaces having nonzero intersection with a fixed one. Givental has shown that a Maslov cycle is a Legendre singularity, i.e. the projection of a smooth conic lagrangian submanifold S in the cotangent bundle of Λ(V). We show here that S is the wavefront set of a Fourier integral distributionwhich is “evaluation at 0 of the quantizations”.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. V.I. Arnol’d. On a characteristic class which enters in quantization conditions. Funct. Anal. Appl., 1 (1967), 1–13.

    Article  MATH  Google Scholar 

  2. J.J. Duistermaat. Fourier Integral Operators, Birkhäuser, Boston (1996).

    MATH  Google Scholar 

  3. A. Givental. Nonlinear generalization of the Maslov index, in “Theory of Singularities and its Applications”, V.I. Arnold, ed., Adv. Soviet Math., 1 (1990), 71–103.

    Google Scholar 

  4. V. Guillemin and S. Sternberg. Some problems in integral geometry and some related problems in microlocal analysis. Amer. J.Math., 101 (1979), 915–955.

    Article  MATH  MathSciNet  Google Scholar 

  5. S. Guillermou, M. Kashiwara and P. Schapira. Sheaf quantization of Hamiltonian isotopies and applications to non displaceability problems, Duke Math. J., 161 (2012), 201–245.

    Article  MATH  MathSciNet  Google Scholar 

  6. L. Hörmander. Fourier integral operators I., Acta Math., 127 (1971), 79–183.

    Article  MATH  MathSciNet  Google Scholar 

  7. L. Hörmander. The Analysis of Linear Partial DifferentialOperators IV, Springer-Verlag, Berlin-Heidelberg (1985).

    Google Scholar 

  8. P. Iglesias-Zemmour, Diffeology, Amer. Math. Soc., Providence (2013).

    MATH  Google Scholar 

  9. B. Kostant. Symplectic spinors, in “Conv. di Geom. Simp. Fis. Mat., INDAM, Rome, 1973”, Symposia Mathematica, 14 (1974), 139–152.

    MathSciNet  Google Scholar 

  10. L. Manivel. Symmetric Functions, Schubert Polynomials, and Degeneracy Loci. SMF/AMS Texts and Monographs, 6 (2001).

  11. V.P. Maslov. Theory of Perturbations and Asymptotic Methods (in Russian), Moskov. Gos. Univ., Moscow (1965).

    Google Scholar 

  12. J. Nie, K. Ranestad and B. Sturmfels. The algebraic degree of semidefinite programming. Math. Programming, 122 (2010), 379–405.

    Article  MATH  MathSciNet  Google Scholar 

  13. W. Tulczyjew and S. Zakrzewski. The category of Fresnel kernels. J. Geom. Phys., 1 (1984), 79–120.

    Article  MATH  MathSciNet  Google Scholar 

  14. C. Viterbo. Intersections de sous-variétés lagrangiennes, fonctionelles d’action et indice des systèmes hamiltoniens. Bull. Soc. Math. France, 115 (1987), 361–390.

    MATH  MathSciNet  Google Scholar 

  15. A. Weinstein. Lectures on Symplectic Manifolds. Regional conference series in mathematics, 29, (American Mathematical Society, Providence, 1977).

  16. A. Weinstein. Connections of Berry and Hannay type for moving lagrangian submanifolds. Advances in Math., 82 (1990), 133–159.

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alan Weinstein.

Additional information

Research partially supported by NSF Grant DMS-0707137 and the France-Berkeley Fund.

About this article

Cite this article

Weinstein, A. The Maslov cycle as a Legendre singularity and projection of a wavefront set. Bull Braz Math Soc, New Series 44, 593–610 (2013). https://doi.org/10.1007/s00574-013-0026-6

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00574-013-0026-6

Keywords

Mathematical subject classification

Navigation