Skip to main content
Log in

The algebraic degree of semidefinite programming

  • FULL LENGTH PAPER
  • Series A
  • Published:
Mathematical Programming Submit manuscript

Abstract

Given a generic semidefinite program, specified by matrices with rational entries, each coordinate of its optimal solution is an algebraic number. We study the degree of the minimal polynomials of these algebraic numbers. Geometrically, this degree counts the critical points attained by a linear functional on a fixed rank locus in a linear space of symmetric matrices. We determine this degree using methods from complex algebraic geometry, such as projective duality, determinantal varieties, and their Chern classes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Alizadeh F., Haeberly J., Overton M.: Complementarity and nondegeneracy in semidefinite programming. Math. Program. 77, 111–128 (1997)

    MathSciNet  Google Scholar 

  2. Bajaj C.: The algebraic degree of geometric optimization problems. Discret. Comput. Geom. 3, 177–191 (1988)

    Article  MATH  MathSciNet  Google Scholar 

  3. Catanese F., Hoşten S., Khetan A., Sturmfels B.: The maximum likelihood degree. Am. J. Math. 128, 671–697 (2006)

    Article  MATH  Google Scholar 

  4. Datta R.: Universality of Nash equilibria. Math. Oper. Res. 28, 424–432 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  5. De Loera, J., Rambau, J., Santos, F.: Triangulations: applications, structures, and algorithms. Algorithms and Computation in Mathematics. Springer, Heidelberg (to appear)

  6. Fulton, W., Pragacz, P.: Schubert varieties and degeneracy loci. Lecture Notes in Mathematics, vol. 1689. Springer, New York (1998)

  7. Gelfand I., Kapranov M., Zelevinsky A.: Discriminants, Resultants and Multidimensional Determinants. Birkhäuser, Boston (1994)

    Book  MATH  Google Scholar 

  8. Grayson, D., Stillman, M.: Macaulay 2, a software system for research in algebraic geometry, Available at http://www.math.uiuc.edu/Macaulay2/

  9. Harris, J.: Algebraic geometry: a first course. Graduate Texts in Mathematics, vol. 113. Springer, New York (1992)

  10. Harris J., Tu L.: On symmetric and skew-symmetric determinantal varieties. Topology 23, 71–84 (1984)

    Article  MATH  MathSciNet  Google Scholar 

  11. Helton W., Vinnikov V.: Linear matrix inequality representation of sets. Comm. Pure Appl. Math. 60, 654–674 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  12. Hoşten S., Khetan A., Sturmfels B.: Solving the likelihood equations. Found. Comput. Math. 5, 389–407 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  13. Kempf G.: Images of homogeneous vector bundles and varieties of complexes. Bull. Am. Math. Soc. 81, 900–901 (1975)

    Article  MATH  MathSciNet  Google Scholar 

  14. Lewis A., Parrilo P., Ramana M.: The Lax conjecture is true. Proc. Am. Math. Soc. 133, 2495–2499 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  15. Macdonald I.G.: Symmetric Functions and Hall Polynomials, 2nd edn. Clarendon Press, Oxford (1995)

    MATH  Google Scholar 

  16. Miller E., Sturmfels B.: Combinatorial Commutative Algebra. Springer Graduate Texts, New York (2005)

    Google Scholar 

  17. Pataki, G.: The geometry of cone-LP’s, in [25]

  18. Pragacz P.: Enumerative geometry of degeneracy loci. Ann. Scient. Ec. Norm. Sup. 21(4), 413–454 (1988)

    MATH  MathSciNet  Google Scholar 

  19. Speyer D.: Horn’s problem, Vinnikov curves, and the hive cone. Duke Math. J. 127, 395–427 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  20. Sturm J.F.: SeDuMi 1.02, a MATLAB toolbox for optimization over symmetric cones. Optim. Methods Softw. 11, 12, 625–653 (1999)

    Article  MathSciNet  Google Scholar 

  21. Tevelev E.: Projective duality and homogeneous spaces. Encyclopaedia of Mathematical Sciences. Springer, Berlin (2005)

    Google Scholar 

  22. Vandenberghe L., Boyd S.: Semidefinite programming. SIAM Rev. 38, 49–95 (1996)

    Article  MATH  MathSciNet  Google Scholar 

  23. Vinnikov V.: Self-adjoint determinantal representation of real plane curves. Math. Ann. 296, 453–479 (1993)

    Article  MATH  MathSciNet  Google Scholar 

  24. von Bothmer, H.C., Ranestad, K.: A general formula for the algebraic degree in semidefinite programming. http://arxiv.org/abs/math/0701877

  25. Wolkowicz H., Saigal R., Vandenberghe L.: Handbook of Semidefinite Programming. Kluwer, Dordrecht (2000)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jiawang Nie.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nie, J., Ranestad, K. & Sturmfels, B. The algebraic degree of semidefinite programming. Math. Program. 122, 379–405 (2010). https://doi.org/10.1007/s10107-008-0253-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10107-008-0253-6

Keywords

Mathematics Subject Classification (2000)

Navigation