Skip to main content
Log in

The non-linear Schrödinger equation with a periodic δ-interaction

  • Published:
Bulletin of the Brazilian Mathematical Society, New Series Aims and scope Submit manuscript

Abstract

We study the existence and stability of space-periodic standing waves for the space-periodic cubic nonlinear Schrödinger equation with a point defect determined by a space-periodic Dirac distributionat the origin. This equation admits a smooth curve of positive space-periodic solutions with a profile given by the Jacobi elliptic function of dnoidal type. Via a perturbationmethod and continuation argument, we prove that in the case of an attractive defect the standing wave solutions are stable in H 1 per ([−π, π]) with respect to perturbations which have the same space-periodic as the wave itself. In the case of a repulsive defect, the standing wave solutions are stable in the subspace of even functions of H 1 per ([−π, π]) and unstable in H 1 per ([−π, π]) with respect to perturbations which have the same space-periodic as the wave itself.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M.J. Ablowitz and H. Segur. Solitons and Inverse Scattering. SIAM Publication (1981).

    Book  MATH  Google Scholar 

  2. G. Agrawal. Nonlinear Fiber Optics, Academic Press (2001).

    Google Scholar 

  3. S. Albeverio, F. Gesztesy, R. Hoegh-Krohn and H. Holden. Solvable Models in Quantum Mechanics, Texts and Monographs in Physics. Springer-Verlag, New York (1988).

    Google Scholar 

  4. S. Albeverio and P. Kurasov. Singular Perturbations of Differential Operators. London Mathematical Society, Lecture Note Series, 271, Cambridge University Press (2000).

    Book  Google Scholar 

  5. J. Angulo. Non-linear stability of periodic travelling-wave equation for the Schrödinger and modified Korteweg-de Vries equation. J. Diff. Eqs., 235 (2007), 1–30.

    Article  MATH  Google Scholar 

  6. J. Angulo. Nonlinear Dispersive Equations: Existence and Stability of Solitary and Periodic Travelling Wave Solutions. Mathematical Surveys and Monographs (SURV), AMS (2009).

    Google Scholar 

  7. J. Angulo, J.L. Bona and M. Scialom. Stability of cnoidal waves. Adv.Diff. Eqs., 11 (2006), 1321–1374.

    MATH  Google Scholar 

  8. J. Angulo and F. Natali. Positivity properties and stability of periodic travelling waves solutions. SIAM, J. Math. Anal., 40 (2008), 1123–1151.

    Article  MathSciNet  MATH  Google Scholar 

  9. J. Angulo and F. Natali. Stability and instability of periodic travelling wave solutions for the critical Korteweg-de Vries and nonlinear Schrödinger equations. Phys. D, 238 (2009), 603–621.

    Article  MathSciNet  MATH  Google Scholar 

  10. J. Bourgain. Global Solutions of Nonlinear Schrödinger Equations. American Mathematical Society ColloquiumPublications, AMS, Providence, RI, 46 (1999).

    MATH  Google Scholar 

  11. V.A. Brazhnyi and V.V. Konotop. Theory of nonlinear matter waves in optical lattices. N. Akhmediev (Ed.). Dissipative Solitons, 18 (2005), 627.

    Google Scholar 

  12. J. Bronski and Z. Rapti. Modulationinstability for nonlinear Schrödinger equations with a periodic potential. Dynamics of PDE, 2 (2005), 335–355.

    MathSciNet  MATH  Google Scholar 

  13. P.F. Byrd and M.D. Friedman. Handbook of Elliptic Integrals for Engineers and Scientists. 2nd ed., Springer, NY (1971).

    Book  MATH  Google Scholar 

  14. D. Cai, D.W. McLaughlin and K.T.R. McLaughlin. The nonlinear Schrödinger Equation as both a PDE and a dynamical system, In handbook of dynamical systems, North-Holland, Amsterdam, 2 (2002), 599–675.

    MathSciNet  Google Scholar 

  15. X.D. Cao and B.A. Malomed. Soliton-defect collisions in the nonlinear Schrödinger Equation. Phys. Lett. A, 206 (1995), 177–182.

    Article  MathSciNet  MATH  Google Scholar 

  16. T. Cazenave. Semilinear Schrödinger Equation. Courant Lecture Notes in Mathematics, vol. 10, AMS, Courant Inst. Math. Sc. (2003).

    Google Scholar 

  17. T. Cazenave and P.-L. Lions. Orbital stability of standingwaves for some nonlinear Schrödinger equations. Comm. Math. Phys., 85 (1982), 549–561.

    Article  MathSciNet  MATH  Google Scholar 

  18. V. Caudrelier, M. Mintchev and E. Ragoucy. Solving the quantum non-linear Schrödinger equation with δ-type impurity. J. Math. Phys., 46(4) (2005).

    Google Scholar 

  19. K. Datchev and J. Holmer. Fast soliton scattering by attractive delta impurities. Comm. PDE., 34 (2009), 1074–1173.

    Article  MathSciNet  MATH  Google Scholar 

  20. K.B. Davis, M.O. Mewes, M.R. Andrews, N.J. van Druten, D.S. Durfee, D.M. Kurn and W. Ketterle. Bose-Einstein condensation in gas of sodium atoms. Phys. Rev. Lett., 74(22) (1995), 3969–3973.

    Article  Google Scholar 

  21. M.S.P. Eastham. The Spectral Theory of Periodic Differential Equations. Scottish Academic Press, London, UK (1973).

    MATH  Google Scholar 

  22. R. Fukuizumi and L. Jeanjean. Stability of standing waves for a nonlinear Schrödinger equationwith a repulsive Dirac delta potential. Discrete Contin. Dyn. Syst., 21 (2008), 121–136.

    Article  MathSciNet  MATH  Google Scholar 

  23. R. Fukuizumi, M. Ohta and T. Ozawa. Nonlinear Schrödinger equation with a point defect. Ann. Inst. H. Poincaré Anal. Non Linéaire, 25 (2008), 837–845.

    Article  MathSciNet  MATH  Google Scholar 

  24. T. Gallay and M. Hărăguş. Stability of small periodic waves for the nonlinear Schrödinger equation. J. Diff. Eqs., 234 (2007), 544–581.

    Article  MATH  Google Scholar 

  25. T. Gallay and M. Hărăguş. Orbital stability of periodic waves for the nonlinear Schrödinger equation. J. Dyn. Diff. Eqs., 19 (2007), 825–865.

    Article  MATH  Google Scholar 

  26. R.H. Goodman, J. Holmes and M. Weinstein. Strong NLS soliton-defect interactions. Phys. D, 192 (2004), 215–248.

    Article  MathSciNet  MATH  Google Scholar 

  27. M. Grillakis, J. Shatah and W. Strauss. Stability theory of solitary waves in the presence of symmetry I. J. Funct.Anal., 74 (1987), 160–197.

    Article  MathSciNet  MATH  Google Scholar 

  28. M. Grillakis, J. Shatah and W. Strauss. Stability theory of solitary waves in the presence of symmetry II. J. Funct.Anal., 94 (1990), 308–348.

    Article  MathSciNet  MATH  Google Scholar 

  29. J. Holmer, J. Marzuola and M. Zworski. Fast soliton scattering by delta impurities. Comm. Math. Phys., 274(91) (2007), 187–216.

    Article  MathSciNet  MATH  Google Scholar 

  30. J. Holmer, J. Marzuola and M. Zworski. Soliton alignedting by external delta potentials. J. Nonlinear Sci., 17(4) (2007), 349–367.

    Article  MathSciNet  MATH  Google Scholar 

  31. J. Holmer and M. Zworski. Slow soliton interaction with external delta potentials. J. Modern Dynam., 1 (2007), 689–718.

    Article  MathSciNet  MATH  Google Scholar 

  32. J. Holmer and M. Zworski. Soliton interaction with slowly varying potentials. IMRN, 2008, Article ID rnn026, 36 pages (2008).

    Google Scholar 

  33. E.L. Ince. The periodic Lamé functions. Proc. Roy. Soc. Edin., 60 (1940), 47–63.

    MathSciNet  Google Scholar 

  34. R.L. Jr. Iorio and V.M.V. Iorio. Fourier Analysis and PartialDifferential Equations, 70, Cambridge Stud. in Advan. Math. (2001).

    Google Scholar 

  35. T. Kato. Perturbation Theory for Linear Operators, 2nd edition, Springer, Berlin (1984).

    MATH  Google Scholar 

  36. R. de L. Kronig and W.G. Penney. Quantum mechanics of electrons in crystal lattices. Pro. Roy. Soc. (London), 130A (1931), 499–513.

    Article  Google Scholar 

  37. S. Le Coz, R. Fukuizumi, G. Fibich, B. Ksherim and Y. Sivan. Instability of bound states of a nonlinear Schrödinger equation with a Dirac potential. Phys. D, 237 (2008), 1103–1128.

    Article  MathSciNet  MATH  Google Scholar 

  38. F. Linares and G. Ponce. Introduction to Nonlinear Dispersive Equations. Universitext. Springer New York (2009).

    MATH  Google Scholar 

  39. Y.C. Ma and M.J. Ablowitz. The periodic cubic Schrödinger equation. Stud. Appl. Math., 65(2) (1981), 113–158.

    MathSciNet  MATH  Google Scholar 

  40. W. Magnus and S. Winkler. Hill’s Equation. Tracts in Pure and Appl. Math., 20 (1976), Wesley, New York.

  41. C.R. Menyuk. Soliton robustness in optical fibers. J.Opt. Soc.Am.B, 10(9) (1993), 1585–1591.

    Article  Google Scholar 

  42. J. Moloney and A. Newell. Nonlinear Optics. Westview Press. Advanced Book Program, Boulder, CO (2004).

    MATH  Google Scholar 

  43. M. Ohta. Instability of bound states for abstract nonlinear Schrödinger equations. Journal of Functional Analysis, 261(1) (2011), 90–110.

    Article  MathSciNet  MATH  Google Scholar 

  44. S. Reed and B. Simon. Methods of Modern Mathematical Physics: Analysis of Operator. Academic Press, Vol. IV, (1978).

  45. G. Rowlands.On the stability of solutions of nonlinear Schrödinger equation. IMA J. Appl.Math., 13 (1974), 367–377.

    Google Scholar 

  46. H. Sakaguchi and M. Tamura. Scattering and trapping of nonlinear Schrödinger solitons in external potentials. J. Phys. Soc. Japan, 73 (2004), 2003.

    MathSciNet  Google Scholar 

  47. B.T. Seaman, L.D. Car and M.J. Holland. Effect of a potential step or impurity on the Bose-Einstein condensate mean field. Phys. Rev. A, 71 (2005).

  48. C. Sulem and P.-L. Sulem. Nonlinear Schrödinger Equations: Self-Focusing and Wave Collapse. Applied Mathematical Sciences, vol. 139, Springer, New York (1999).

    MATH  Google Scholar 

  49. T. Tao. Local And Global Analysis of Nonlinear Dispersive And Wave Equations. CBMS Regional Conference Series in Mathematics, AMS, vol. 106, Providence, RI., (2006).

    Google Scholar 

  50. M.I. Weinstein. Nonlinear Schrödinger equation and sharp interpolation estimates. Comm. Math. Phys., 87 (1983), 567–576.

    Article  MATH  Google Scholar 

  51. V.E. Zakharov and A.B. Shabat. Exact theory of two dimensional and one dimensional self modulation of waves in nonlinearmedia. Sov. Phys. J.E.T.P., 34 (1972), 62–69.

    MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jaime Angulo Pava.

About this article

Cite this article

Pava, J.A., Ponce, G. The non-linear Schrödinger equation with a periodic δ-interaction. Bull Braz Math Soc, New Series 44, 497–551 (2013). https://doi.org/10.1007/s00574-013-0024-8

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00574-013-0024-8

Keywords

Mathematical subject classification

Navigation