Skip to main content
Log in

Standing Waves for Discrete Nonlinear Schrödinger Equations with Nonperiodic Bounded Potentials

  • Published:
Acta Mathematicae Applicatae Sinica, English Series Aims and scope Submit manuscript

Abstract

In this paper, we investigate standing waves in discrete nonlinear Schrödinger equations with nonperiodic bounded potentials. By using the critical point theory and the spectral theory of self-adjoint operators, we prove the existence and infinitely many sign-changing solutions of the equation. The results on the exponential decay of standing waves are also provided.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bartsch, T., Liu, Z.L., Weth, T. Nodal solutions of a p-Laplacian equation. Proc. London Math. Soc, 91: 129–152 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  2. Christodoulides, D.N., Lederer, F., Silberberg, Y. Discretizing light behaviour in linear and nonlinear waveguide lattices. Nature, 424: 817–823 (2003)

    Article  Google Scholar 

  3. Eilbeck, J.C., Johansson, M. The discrete nonlinear Schrodinger equation: 20 years on. In: Localization and Energy Transfer in Nonlinear Systems, edited by L. Vasquez, R.S. MacKay, M.P. Zorzano, World Scientific, Singapore, 2003, 44–67

    Chapter  Google Scholar 

  4. Flach, S., Gorbach, A. Discrete breathers-advances in theory and applications. Phys. Rep., 467: 1–116 (2008)

    Article  MATH  Google Scholar 

  5. Hardy, G.H., Littlewood, J.E., Pólya, G. Inequalities, 2nd Ed., Cambridge University Press, Cambridge, 1952

    MATH  Google Scholar 

  6. Kato, T. Perturbation theory for linear operators. Springer-Verlag, ???, 1966

    Book  MATH  Google Scholar 

  7. Kevrekides, P.G., Rasmussen, K.Ø, Bishop, A.R. The discrete nonlinear Schroinger equation: A survey of recent results. Int. J. Modern Phys. B, 15: 2833–2900 (2001)

    Article  Google Scholar 

  8. Kopidakis, G., Aubry, S., Tsironis, G.P. Targeted energy transfer through discrete breathers in nonlinear systems. Phys. Rev. Lett., 87: 165501 (2001)

    Google Scholar 

  9. Liu, Z.L., Su, J.B., Weth, T. Compactness results for Schroinger equations with asymptotically linear terms. J. Differential Equations, 231: 501–512 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  10. Liu, Z.L., Sun, J.X. Invariant sets of descending flow in critical point theory with applications to nonlinear differential equations. J. Differential Equations, 172: 257–299 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  11. Livi, R., Franzosi, R., Oppo, G.L. Self-localization of Bose-Einstein condensates in optical lattices via boundary dissipation. Phys. Rev. Lett., 97: 060401 (2006)

    Article  Google Scholar 

  12. Pankov, A. Gap solitons in periodic discrete nonlinear Schroinger equations. Nonlinearity, 19: 27–40 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  13. Pankov, A. Gap solitons in periodic discrete nonlinear Schroinger equations, II: A generalized Nehari manifold approach. Discrete Contin. Dyn. Syst. Ser. A, 19: 419–430 (2007)

    Article  MATH  Google Scholar 

  14. Pankov, A., Rothos, V. Periodic and decaying solutions in discrete nonlinear Schroinger equation with saturable nonlinearity. Proc. Roy. Soc. Ser. A, 464: 3219–3236 (2008)

    Article  MATH  Google Scholar 

  15. Pankov, A. Standing waves for discrete nonlinear Schroinger equations: sign-changing nonlinearities. Appl. Anal., 92: 308–317 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  16. Schechter, M., Zou, W. Sign-changing critical points from linking type theorems. Trans. Amer. Math. Soc., 358: 5293–5318 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  17. Shi, H.P., Zhang, H.Q. Existence of gap solitons in periodic discrete nonlinear Schroinger equations. J. Math. Anal. Appl., 361: 411–419 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  18. Sun, J.X. Nonlinear functional analysis and its applications. Science Press, Beijing, 2008 (in Chinese)

    Google Scholar 

  19. Teschl, G. Jacobi operators and completely integrable nonlinear lattices. Amer. Math. Soc, Providence, RI, New York, 2000

    Google Scholar 

  20. Weidmann, J. Linear operators in Hilbert spaces. Springer-Verlag, New York, 1980

    Book  MATH  Google Scholar 

  21. Yang, M.B., Chen, W.X., Ding, Y.H. Solutions for discrete periodic Schroinger equations with spectrum 0. Acta Appl. Math., 110: 1475–1488 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  22. Zhang, G. Breather solutions of the discrete nonlinear Schroinger equations with sign changing nonlinearity. J. Math. Phys., 52: 043516 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  23. Zhang, G. Breather solutions of the discrete nonlinear Schroinger equations with unbounded potentials. J. Math. Phys., 50: 013505 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  24. Zhang, G., Pankov, A. Standing waves of the discrete nonlinear Schroinger equations with unbounded potentials, II. Appl. Anal, 89: 1541–1557 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  25. Zhou, Z., Yu, J.S. On the existence of homoclinic solutions of a class of discrete nonlinear periodic systems. J. Differential Equations, 249: 1199–1212 (2010)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peng-fei Guo.

Additional information

Supported by Science and technology plan foundation of Guangzhou (No. 201607010218) and by Public Research & Capacity-Building Project of Guangdong (No. 2015A070704059).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

He, Ts., Zhang, M., Liang, Kh. et al. Standing Waves for Discrete Nonlinear Schrödinger Equations with Nonperiodic Bounded Potentials. Acta Math. Appl. Sin. Engl. Ser. 35, 374–385 (2019). https://doi.org/10.1007/s10255-018-0787-1

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10255-018-0787-1

Keywords

Navigation