Skip to main content
Log in

A characterization of hyperbolic potentials of rational maps

  • Published:
Bulletin of the Brazilian Mathematical Society, New Series Aims and scope Submit manuscript

Abstract

Consider a rational map f of degree at least 2 acting on its Julia set J(f), a Hölder continuous potential φ: J(f) → ℝ and the pressure P(f,φ). In the case where

$$\mathop {\sup }\limits_{J(f)} \phi < P(f,\phi ),$$

the uniqueness and stochastic properties of the corresponding equilibrium states have been extensively studied. In this paper we characterize those potentials φ for which this property is satisfied for some iterate of f, in terms of the expanding properties of the corresponding equilibrium states. A direct consequence of this result is that for a non-uniformly hyperbolic rational map every Hölder continuous potential has a unique equilibrium state and that this measure is exponentially mixing.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. Aspenberg. The Collet-Eckmann condition for rational functions on the Riemann sphere. PhD thesis (2004).

  2. V. Baladi. Positive transfer operators and decay of correlations, volume 16 of Advanced Series in Nonlinear Dynamics. World Scientific Publishing Co. Inc., River Edge, NJ (2000).

    Google Scholar 

  3. H. Bruin and G. Keller. Equilibrium states for S-unimodal maps. Ergodic Theory Dynam. Systems, 18(4) (1998), 765–789.

    Article  MathSciNet  MATH  Google Scholar 

  4. R. Bowen. Equilibrium states and the ergodic theory of Anosov diffeomorphisms. Lecture Notes in Mathematics, Vol. 470. Springer-Verlag, Berlin (1975).

    MATH  Google Scholar 

  5. H. Bruin and M. Todd. Complex maps without invariant densities. Nonlinearity, 19(12) (2006), 2929–2945.

    Article  MathSciNet  MATH  Google Scholar 

  6. H. Bruin and M. Todd. Equilibrium states for interval maps: potentials with supϕ — infϕ < h top(f). Comm. Math. Phys., 283(3) (2008), 579–611.

    Article  MathSciNet  MATH  Google Scholar 

  7. L. Carleson and T.W. Gamelin. Complex dynamics. Universitext: Tracts in Mathematics. Springer-Verlag, New York (1993).

    Google Scholar 

  8. L. Carleson, P.W. Jones and J.-C. Yoccoz. Julia and John. Bol. Soc. Brasil. Mat. (N.S.), 25(1) (1994), 1–30.

    Article  MathSciNet  MATH  Google Scholar 

  9. H. Comman and J. Rivera-Letelier. Large deviation principles for non-uniformly hyperbolic rational maps. Ergodic Theory Dynam. Systems, 31(2) (2011), 321–349.

    Article  MathSciNet  MATH  Google Scholar 

  10. N. Dobbs. Measures with positive lyapunov exponent and conformal measures in rational dynamics. arXiv:0804.3753v2, to appear in Trans. Amer. Math. Soc., (2008).

  11. M. Denker, F. Przytycki and M. Urbański. On the transfer operator for rational functionsonthe Riemannsphere. ErgodicTheoryDynam.Systems, 16(2)(1996), 255–266.

    MATH  Google Scholar 

  12. M. Denker and M. Urbański. Ergodic theory of equilibrium states for rational maps. Nonlinearity, 4(1) (1991), 103–134.

    Article  MathSciNet  MATH  Google Scholar 

  13. A. Freire, A. Lopes and R. Mañé. An invariant measure for rational maps. Bol. Soc. Brasil. Mat., 14(1) (1983), 45–62.

    Article  MathSciNet  MATH  Google Scholar 

  14. J. Graczyk and G. Świątek. Harmonic measure and expansion on the boundary of the connectedness locus. Invent. Math., 142(3) (2000), 605–629.

    Article  MathSciNet  MATH  Google Scholar 

  15. N. Haydn. Convergence of the transfer operator for rational maps. ErgodicTheory Dynam. Systems, 19(3) (1999), 657–669.

    Article  MathSciNet  MATH  Google Scholar 

  16. G. Iommi and M. Todd. Natural equilibrium states for multimodal maps. Comm. Math. Phys., 300(1) (2010), 65–94.

    Article  MathSciNet  MATH  Google Scholar 

  17. F. Ledrappier. Quelques propriétés ergodiques des applications rationnelles. C.R. Acad. Sci. Paris Sér. I Math., 299(1) (1984), 37–40.

    MathSciNet  MATH  Google Scholar 

  18. M.Ju. Ljubich. Entropy properties of rational endomorphisms of the Riemann sphere. Ergodic Theory Dynam. Systems, 3(3) (1983), 351–385.

    Article  MathSciNet  Google Scholar 

  19. R. Mañé. On the uniqueness of the maximizing measure for rational maps. Bol. Soc. Brasil. Mat., 14(1) (1983), 27–43.

    Article  MathSciNet  MATH  Google Scholar 

  20. C.T. McMullen. Hausdorff dimension and conformal dynamics. II. Geometrically finite rational maps. Comment. Math. Helv., 75(4) (2000), 535–593.

    Article  MathSciNet  MATH  Google Scholar 

  21. J. Milnor. Dynamics in one complex variable, volume 160 of Annals of Mathematics Studies. Princeton University Press, Princeton, NJ, third edition (2006).

    Google Scholar 

  22. N. Makarov and S. Smirnov. On “thermodynamics” of rational maps. I. Negative spectrum. Comm. Math. Phys., 211(3) (2000), 705–743.

    Article  MathSciNet  MATH  Google Scholar 

  23. N. Makarov and S. Smirnov. On thermodynamics of rational maps. II. Non-recurrent maps. J. London Math. Soc. (2), 67(2) (2003), 417–432.

    Article  MathSciNet  MATH  Google Scholar 

  24. Ch. Pommerenke. Boundary behaviour of conformal maps, volume 299 of Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences]. Springer-Verlag, Berlin (1992).

    Google Scholar 

  25. F. Przytycki and J. Rivera-Letelier. Nice inducing schemes and the thermodynamics of rational maps. (2008). arXiv:0806.4385v2.

  26. F. Przytycki, J. Rivera-Letelier and S. Smirnov. Equivalence and topological invariance of conditions for non-uniform hyperbolicity in the iteration of rational maps. Invent. Math., 151(1) (2003), 29–63.

    Article  MathSciNet  MATH  Google Scholar 

  27. F. Przytycki. On the Perron-Frobenius-Ruelle operator for rational maps on the Riemann sphere and for Hölder continuous functions. Bol. Soc. Brasil. Mat. (N.S.), 20(2) (1990), 95–125.

    Article  MathSciNet  MATH  Google Scholar 

  28. F. Przytycki and M. Urbański. Conformal fractals: ergodic theory methods, volume 371 of London Mathematical Society Lecture Note Series. Cambridge University Press, Cambridge (2010).

    MATH  Google Scholar 

  29. D. Ruelle. A measure associated with axiom-A attractors. Amer. J. Math., 98(3) (1976), 619–654.

    Article  MathSciNet  MATH  Google Scholar 

  30. D. Ruelle. An inequality for the entropy of differentiable maps. Bol. Soc. Brasil. Mat., 9(1) (1978), 83–87.

    Article  MathSciNet  MATH  Google Scholar 

  31. Ja.G. Sinaĭ. Gibbs measures in ergodic theory. Uspehi Mat. Nauk, 27(4(166)) (1972), 21–64.

    MATH  Google Scholar 

  32. S. Smirnov. Symbolic dynamics and Collet-Eckmann conditions. Internat. Math. Res. Notices, (7) (2000), 333–351.

  33. M. Urbanski and A. Zdunik. Ergodic theory for holomorphic endomorphisms of complex projective spaces. (2009).

  34. P. Varandas and M. Viana. Existence, uniqueness and stability of equilibrium states for non-uniformly expanding maps. Ann. Inst. H. Poincaré Anal. Non Linéaire, 27(2) (2010), 555–593.

    Article  MathSciNet  MATH  Google Scholar 

  35. P. Walters. An introduction to ergodic theory, volume 79 of Graduate Texts in Mathematics. Springer-Verlag, New York (1982).

    Book  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Irene Inoquio-Renteria.

Additional information

Partially supported by FAPESP 2010/07267-4.

Partially supported by FONDECYT N 1100922.

About this article

Cite this article

Inoquio-Renteria, I., Rivera-Letelier, J. A characterization of hyperbolic potentials of rational maps. Bull Braz Math Soc, New Series 43, 99–127 (2012). https://doi.org/10.1007/s00574-012-0007-1

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00574-012-0007-1

Keywords

Mathematical subject classification

Navigation