Skip to main content
Log in

Global well-posedness for a coupled modified KdV system

  • Published:
Bulletin of the Brazilian Mathematical Society, New Series Aims and scope Submit manuscript

Abstract

We prove the sharp global well-posedness result for the initial value problem (IVP) associated to the system of the modified Korteweg-de Vries (mKdV) equation. For the single mKdV equation such result has been obtained by using Mirura’s Transform that takes the KdV equation to the mKdV equation [8]. We do not know the existence of Miura’s Transform that takes a KdV system to the system we are considering. To overcome this difficulty we developed a new proof of the sharp global well-posedness result for the single mKdV equation without using Miura’s Transform. We could successfully apply this technique in the case of the mKdV system to obtain the desired result.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. Ablowitz, D. Kaup, A. Newell and H. Segur. Nonlinear evolution equations of physical significance. Phys. Rev. Lett., 31(2) (1973), 125–127.

    Article  MathSciNet  Google Scholar 

  2. E. Alarcon, J. Angulo and J.F. Montenegro. Stability and instability of solitary waves for a nonlinear dispersive system. Nonlinear Analysis, 36 (1999), 1015–1035.

    Article  MathSciNet  MATH  Google Scholar 

  3. J.L. Bona, P. Souganidis and W. Strauss. Stability and instability of solitary waves of Korteweg-de Vries type equation. Proc. Roy. Soc. London Ser. A, 411 (1987), 395–412.

    Article  MathSciNet  MATH  Google Scholar 

  4. J. Bourgain. Refinements of Strichartz’ inequality and applications to 2D-NLS with critical nonlinearity. Internat. Math. Res. Notices, 5 (1998), 253–283.

    Article  MathSciNet  Google Scholar 

  5. X. Carvajal. Propriedades das soluções de uma equação de Schrödinger não linear de alta ordem. PhD Thesis, Instituto de Matemática Pura e Aplicada, IMPA, Rio de Janeiro, Brazil (2002).

    Google Scholar 

  6. X. Carvajal.Sharp global well-posedness for a higher order Schrödinger equation. J. Fourier Anal. Appl., 12(1) (2006), 53–70.

    Google Scholar 

  7. J. Colliander, M. Keel, G. Staffilani, H. Takaoka and T. Tao. Global well-posedness for KdV in Sobolev spaces of negative index. Electronic. J. Diff. Eqn. 2001(26) (2001), 1–7.

    Google Scholar 

  8. J. Colliander, M. Keel, G. Staffilani, H. Takaoka and T. Tao. Sharp global well-posedness for KdV and modified KdV onand \(\mathbb{T}\). J. Amer. Math. Soc., 16(2003), 705–749.

    Article  MathSciNet  MATH  Google Scholar 

  9. J. Colliander, M. Keel, G. Staffilani, H. Takaoka and T. Tao.Global well-posedness for Schrödinger equations with derivative. SIAM J. Math. Anal., 33 (2001), 649–669.

    Article  MathSciNet  MATH  Google Scholar 

  10. J. Colliander, M. Keel, G. Staffilani, H. Takaoka and T. Tao. A refined global well-posedness result for Schrödinger equations with derivative. SIAM J. Math. Anal., 34 (2002), 64–86.

    Article  MathSciNet  MATH  Google Scholar 

  11. J. Colliander, M. Keel, G. Staffilani, H. Takaoka and T. Tao. Multilinear estimates for periodic KdV equation, and applications. J. Funct. Anal., 211 (2004), 173–218.

    Article  MathSciNet  MATH  Google Scholar 

  12. L.G. Farah. Global rough solutions to the critical generalized KdV equation. J. Differential Equations, 249(8) (2010), 1968–1985.

    Article  MathSciNet  MATH  Google Scholar 

  13. G. Fonseca, F. Linares and G. Ponce. Global well-posedness for the modified Korteweg-de Vries equation. Communications in PDE, 24 (1999), 683–705.

    Article  MathSciNet  MATH  Google Scholar 

  14. G. Fonseca, F. Linares and G. Ponce. Global existence of the critical generalized KdV equation. Proc. Amer. Math. Soc., 131 (2003), 1847–1855.

    Article  MathSciNet  MATH  Google Scholar 

  15. J. Ginibre. The Cauchy problem for periodic Semilinear PDE in spaces variables. Astérisque, 237 (1996), 163–187.

    MathSciNet  Google Scholar 

  16. J. Ginibre, Y. Tsutsumi and G. Velo. On the Cauchy problem for the Zakharov system. J. Funct. Anal., 151(2) (1997), 384–436.

    Article  MathSciNet  MATH  Google Scholar 

  17. M. Grillakis, J. Shatah and W. Strauss. Stability theory of solitary waves in the presence of symmetry I. J. Funct. Anal., 74 (1987), 160–197.

    Article  MathSciNet  MATH  Google Scholar 

  18. A. Grünrock. A bilinear Airy-estimate with application to gKdV-3. Differential and Integral Equations, 18 (2005), 1333–1339.

    MathSciNet  MATH  Google Scholar 

  19. T. Kato. On the Cauchy problem for the (generalized) Korteweg-de Vries equation. Advances in Mathematics Supplementary Studies, Studies in Appl. Math., 8 (1983), 93–128.

    Google Scholar 

  20. C.E. Kenig, G. Ponce and L. Vega. Global well-posedness for semi-linear wave equations. Comm. in PDE, 25(9&10) (2000), 1741–1752.

    Article  MathSciNet  MATH  Google Scholar 

  21. C.E. Kenig, G. Ponce and L. Vega. Oscillatory integrals and regularity of dispersive equations. Indiana University Math. J., 40(1) (1991), 33–69.

    Article  MathSciNet  MATH  Google Scholar 

  22. C.E. Kenig, G. Ponce and L. Vega. Well-posedness and scattering results for the generalized Korteweg-de Vries equation via the contraction principle. Comm. Pure Appl. Math., 46 (1993), 527–620.

    Article  MathSciNet  MATH  Google Scholar 

  23. C.E. Kenig, G. Ponce and L. Vega. On the (generalized) Korteweg-de Vries equation. Duke Math. J., 59(3) (1989), 585–610.

    Article  MathSciNet  MATH  Google Scholar 

  24. R.M. Miura. The Korteweg-de Vries equation: A survey of results. SIAM review, 18 (1976), 412–459.

    Article  MathSciNet  MATH  Google Scholar 

  25. J.F. Montenegro. Sistemas de equações de evolução não lineares; Estudo local, global e estabilidade de ondas solitárias. Ph.D. Thesis, IMPA, Rio de Janeiro (1995).

    Google Scholar 

  26. M. Panthee. Properties of Solutions to some Nonlinear Dispersive Models. Ph.D. Thesis, IMPA, Rio de Janeiro (2004).

    Google Scholar 

  27. H. Pecher. Global well-posedness below energy space for the 1-dimensional Zakharov system. Internat. Math. Res. Notices, 19 (2001), 1027–1056.

    Article  MathSciNet  Google Scholar 

  28. A.C. Scott, F.Y. Chu and D.W. McLaughin. The Soliton: A New Concept in Applied Sciences. Proc. IEEE, 61 (1973), 1443–1483.

    Article  MathSciNet  Google Scholar 

  29. H. Takaoka. Global well-posedness for Schrödinger equations with derivative in a nonlinear term and data in low-order Sobolev spaces. Electronic J. Diff. Eqn., 2001(42) (2001), 1–23.

    MathSciNet  Google Scholar 

  30. H. Takaoka. Global well-posedness for the Kadomtsev-Petviashvili II equation. Discrete Contin. Dynam. Systems, 6 (2000), 483–499.

    Article  MathSciNet  MATH  Google Scholar 

  31. T. Tao. Multilinear weighted convolution of L 2-functions, and applications to nonlinear dispersive equations. Amer. J. Math., 123(5) (2001), 839–908.

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Adán J. Corcho.

About this article

Cite this article

Corcho, A.J., Panthee, M. Global well-posedness for a coupled modified KdV system. Bull Braz Math Soc, New Series 43, 27–57 (2012). https://doi.org/10.1007/s00574-012-0004-4

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00574-012-0004-4

Keywords

Mathematical subject classification

Navigation