Skip to main content
Log in

Abstract

In this notes we classify toric Fano 4-folds having positive second Chern character.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. D.A. Cox, J.B. Little and H. Schenck. Toric varieties, to be publish by American Mathematical Society as part of their Graduate Studies in Mathematics series, available at http://www.cs.amherst.edu/_dac/toric.html.

  2. V.V. Batyrev. On the classification of toric Fano 4-folds. J. Math. Sci.(New York), 94(1) (1999), 1021–1050.

    Article  MathSciNet  MATH  Google Scholar 

  3. W. Fulton. Introduction to toric varieties. Annals of Mathematics Studies, 131 (1993), Princeton University Press.

  4. A.J. de Jong and J. Starr. Higher Fano manifolds and rational surfaces. Duke Math. J., 139(1) (2007), 173–183.

    Article  MathSciNet  MATH  Google Scholar 

  5. A.J. de Jong and J. Starr. A note on Fano manifolds whose second Chern character is positive, pre-print math.AG/0602644v1, (2006).

  6. C. Araujo and A-M. Castravet. 2-Fano 3-folds, preprint.

  7. C. Araujo and A-M. Castravet. Polarized minimal families of rational curves and higher Fano manifolds, to appear in American Journal of Mathematics, preprint math.AG/0906.5388v1, (2009).

  8. V.V. Batyrev. Toroidal Fano 3-folds. Mathematics of the USSR Izvestiya, 19 (1982), 13–25.

    Article  MATH  Google Scholar 

  9. M. Kreuzer and B. Nill. Classification of toric Fano 5-folds. Advances in geometry, 9(1) (2009), 85–97.

    Article  MathSciNet  MATH  Google Scholar 

  10. J. Kollár, Y. Miyaoka and S. Mori. Rational connectedness and boundedness of Fano manifolds. J. Differ. Geom., 36(3) (1992), 765–779.

    MATH  Google Scholar 

  11. J. Kollár, Y. Miyaoka and S. Mori. Rational curves on Fano varieties, in Classification of irregular varieties, minimal models and abelian varieties. Proc. Conf., Trento/Italy 1990, Lect. Notes Math. 1515, 100–105 (1992).

  12. H. Sato. Toward the classification of higher-dimensional toric Fano varieties. Tôhoku Math. J. (2), 52(3) (2000), 383–413.

    Article  MATH  Google Scholar 

  13. R. Hartshorne. Algebraic Geometry. Graduate texts in Math., Springer-Verlag, (1977).

  14. H. Sato. The numerical class of a surface on a toric manifold, pre-print math.AG/11065949v1, (2011).

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Edilaine Ervilha Nobili.

About this article

Cite this article

Nobili, E.E. Classification of Toric 2-Fano 4-folds. Bull Braz Math Soc, New Series 42, 399–414 (2011). https://doi.org/10.1007/s00574-011-0022-7

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00574-011-0022-7

Keywords

Mathematical subject classification

Navigation