Skip to main content
Log in

A historical perspective on mycorrhizal mutualism emphasizing arbuscular mycorrhizas and their emerging challenges

  • Review
  • Published:
Mycorrhiza Aims and scope Submit manuscript

A Correction to this article was published on 01 October 2022

This article has been updated

Abstract

Arbuscular mycorrhiza, one of the oldest interactions on earth (~ 450 million years old) and a first-class partner for plants to colonize emerged land, is considered one of the most pervasive ecological relationships on the globe. Despite how important and old this interaction is, its discovery was very recent compared to the long story of land plant evolution. The story of the arbuscular mycorrhiza cannot be addressed apart from the history, controversies, and speculations about mycorrhiza in its broad sense. The chronicle of mycorrhizal research is marked by multiple key milestones such as the initial description of a “persistent epiderm and pellicular wall structure” by Hartig; the introduction of the “Symbiotismus” and “Mycorrhiza” concepts by Frank; the description of diverse root-fungal morphologies; the first description of arbuscules by Gallaud; Mosse’s pivotal statement of the beneficial nature of the arbuscular mycorrhizal symbiosis; the impact of molecular tools on the taxonomy of mycorrhizal fungi as well as the development of in vitro root organ cultures for producing axenic arbuscular mycorrhizal fungi (AMF). An appreciation of the story – full of twists and turns – of the arbuscular mycorrhiza, going from the roots of mycorrhiza history, along with the discovery of different mycorrhiza types such as ectomycorrhiza, can improve research to help face our days’ challenge of developing sustainable agriculture that integrates the arbuscular mycorrhiza and its ecosystem services.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Change history

References

  • Adholeya A, Tiwari P, Singh R (2005) Large-scale inoculum production of arbuscular mycorrhizal fungi on root organs and inoculation strategies. In: Declerck S, Fortin JA, Strullu D-G, eds. Soil Biology. In Vitro Culture of Mycorrhizas. Berlin, Heidelberg: Springer, 315–338

  • Alguacil MM, Torrecillas E, Lozano Z, Roldan A (2011) Evidence of differences between the communities of arbuscular mycorrhizal fungi colonizing galls and roots of Prunus persica infected by the root-knot nematode Meloidogyne incognita. Appl Environ Microbiol 77:8656–8661

    Article  CAS  PubMed Central  Google Scholar 

  • Anton de Bary H (1879) Die Erscheinung der Symbiose. Trübner, Strasbourg

  • Asai T (1934) Über das Vorkommen und die Bedeutung der Wurzelpilze in den Landpflanzen. Japanese J Botany 7:107–150

    Google Scholar 

  • Asai T (1942) Die Bedeutung der mycorrhiza für das Pflanzenleben. Japanese J Botany 12:359–436

    Google Scholar 

  • Badri A, Stefani FOP, Lachance G, Roy-Arcand L, Beaudet D, Vialle A, Hijri M (2016) Molecular diagnostic toolkit for Rhizophagus irregularis isolate DAOM-197198 using quantitative PCR assay targeting the mitochondrial genome. Mycorrhiza 26:721–733

    Article  CAS  PubMed  Google Scholar 

  • Bago B, Pfeffer P, Abubaker J, Jun J, Allen J, Brouillette J et al (2003) Carbon export from arbuscular mycorrhizal roots involves the translocation of carbohydrate as well as lipid. Plant Physiol 131:1496–1507

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bago B, Zipfel W, Williams R, Jun J, Arreola R, Lammers P et al (2002) Translocation and utilization of fungal storage lipid in the arbuscular mycorrhizal symbiosis. Plant Physiol 128:108–124

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Baker C, Steel D, Nieukirk S, Klinck H (2018) Environmental DNA (eDNA) from the wake of the whales: droplet digital PCR for detection and species identification. Front Mar Sci 5:133

    Article  Google Scholar 

  • Balestrini R, Gómez-Ariza J, Lanfranco L, Bonfante P (2007) Laser microdissection reveals that transcripts for five plant and one fungal phosphate transporter genes are contemporaneously present in arbusculated cells Mol. Plant Microbe Interact 20:1055–1062

    Article  CAS  Google Scholar 

  • Basiru S, Mwanza H (2021) Hijri M (2021) Analysis of arbuscular mycorrhizal fungal inoculant benchmarks. Microorganisms 9:81

    Article  CAS  Google Scholar 

  • Baylis GTS (1959) Effect of vesicular-arbuscular mycorrhiza on the growth of Griselinia littoralis (Cornaceae). New Phytol 58:274–280

    Article  Google Scholar 

  • Bécard G, Kosuta S, Tamasloukht M, Séjalon-Delmas N, Roux C (2004) Partner communication in the arbuscular mycorrhizal interaction. Can J Bot 82:1186–1197

    Article  Google Scholar 

  • Bevege DI (1968) A rapid technique for clearing tannins and staining intact roots for detection of mycorrhizas caused by Endogone spp., and some records of infection in Australasian plants. Trans Br Mycol Soc 51:808–810

    Article  Google Scholar 

  • Binet MN, van Tuinen D, Souard F, Sage L, Périgon S, Gallet C, Legay N, Lavorel S, Mouhamadou B (2017) Responses of above- and below-ground fungal symbionts to cessation of mowing in subalpine grassland. Fungal Ecol 25:14–21

    Article  Google Scholar 

  • Bonfante P, Genre A (2010) Mechanisms underlying beneficial plant–fungus interactions in mycorrhizal symbiosis. Nat Commun 1:48

    Article  PubMed  Google Scholar 

  • Bonfante P (1991) Biologia delle micorrize nel Centro di Studio sulla Micologia: il passata, il presente e il futuro. In: Estratto da Funghi. CNR, Torino, Google Scholar: Piante e Suolo. Quarat’anni di ricerche del Centro di Studio sulla Micologia del Terreno nel centenario della nascita del suo fondatore Beniamino Peyronel. Centro di Studio sulla Micologia del Terreno, 135–156

  • Bonfante-Fasolo P, Faccio A, Perotto S, Schubert A (1990) Correlation between chitin distribution and cell wall morphology in the mycorrhizal fungus Glomus versiforme. Mycol Res 94:157–165

    Article  CAS  Google Scholar 

  • Bonfante-Fasolo P, Scannerini S (1992) The cellular basis of plant fungus interchanges in mycorrhizal associations. In: Allen MF (ed) Mycorrhizal functioning—an integrative plant-fungal process. Chapman and Hall, New York, pp 65–101

    Google Scholar 

  • Börstler B, Raab P, Thiéry O, Morton J, Redecker D (2008) Genetic diversity of the arbuscular mycorrhizal fungus Glomus intraradices as determined by mitochondrial large subunit rRNA gene sequences is considerably higher than previously expected. New Phytol 180:452–465

    Article  PubMed  Google Scholar 

  • Boudier E (1876) Du parasitisme probable de quelques espèces du genre Elaphomyces Et De La Recherche De Ces Tubéracés., Bulletin de la Société Botanique de France, Tome 23 - Fascicule 1, Compte rendus des séances. 115–119

  • Bowen G, Rovira A (1968) The influence of micro-organisms on growth and metabolism on plant roots. In: Wittington WJ (ed) Root growth. Butterworth, London, Google Scholar, pp 170–199

    Google Scholar 

  • Brígido C, van Tuinen D, Brito I, Alho L, Goss MJ, Carvalho M (2017) Management of the biological diversity of AM fungi by combination of host plant succession and integrity of extraradical mycelium. Soil Biol Biochem 112:237–247

    Article  Google Scholar 

  • Bruchmann H (1874) Wachstum der Wurzeln von Lycopodium und Isoetes. Z Naturwiss 8:522–580

    Google Scholar 

  • Bruges A (1936) On the significance of mycorrhiza. New Phytol 35:117–131

    Article  Google Scholar 

  • Brundrett M, Piché Y, Peterson R (1984) A new method for observing the morphology of vesicular–arbuscular mycorrhizae. Can J Bot 62:2128–2134

    Article  Google Scholar 

  • Bruns TD, Taylor JW (2016) Comment on “Global assessment of arbuscular mycorrhizal fungus diversity reveals very low endemism”. Science, 351(6275):826–826

  • Butler E (1939) The occurrences and systematic position of the vesicular-arbuscular type of mycorrhizal fungi. Trans Br Mycol Soc 22:274–301

    Article  Google Scholar 

  • Caser M, Chitarra W, D’Angiolillo F, Perrone I, Demasi S, Lovisolo C, Pistelli L, Pistelli L, Scariot V (2019) Drought stress adaptation modulates plant secondary metabolite production in Salvia dolomitica Codd. Ind Crops Prod 129:85–96

    Article  CAS  Google Scholar 

  • Chen M, Arato M, Borghi L, Nouri E, Reinhardt D (2018) Beneficial services of arbuscular mycorrhizal fungi – from ecology to application front. Plant Sci., 9

  • Chomicki G, Werner G, West S, Kiers E (2020) Compartmentalization drives the evolution of symbiotic cooperation. Philos Trans R Soc B 375(1808):20190602

    Article  CAS  Google Scholar 

  • Clapp J, Fitter A, Young J (1999) Ribosomal small subunit sequence variation within spores of an arbuscular mycorrhizal fungus, Scutellospora sp. Mol Ecol 8:915–921

    Article  CAS  PubMed  Google Scholar 

  • Collins CD, Foster BL (2009) Community-level consequences of mycorrhizae depend on phosphorus availability. Ecology 90(9):2567–2576

    Article  PubMed  Google Scholar 

  • Cox G (1975) Ultrastructural evidence relating to host-entophyte transfer in a vesicular-arbuscular mycorrhiza. In: Sanders FE, Mosse B, Tinker PB (eds) Endomycorrhizas, Proceedings of a Symposium held at the University of Leeds. Academic Press, London.

  • Cox G, Tinker P (1976) Translocation and transfer of nutrients in vesicular–arbuscular mycorrhizas New Phytol 77:371-378

  • Curtis W, Hooker W (1828) Flora Iodinensis Londo

  • Daft M, Nicolson T (1966) Effect of endogone mycorrhiza on plant growth. New Phytologis 65:342–350

    Article  Google Scholar 

  • Dangeard PA (1896) Une maladie du peuplier dans l’ouest de la France. Botaniste 58:38–43

    Google Scholar 

  • Dangeard P (1900) Le Rhizophagus Populinus Botaniste 7:285–287

    Google Scholar 

  • Davison J, Moora M, Öpik M, Adholeya A, Ainsaar L, Bâ A et al (2015) Global assessment of arbuscular mycorrhizal fungus diversity reveals very low endemism. Science 349(6251):970–973

  • Dawkins R (1978) Replicator selection and the extended phenotype. Z Tierpsychol 47:61–76

    Article  CAS  PubMed  Google Scholar 

  • Diagne N, Escoute J, Lartaud M, Verdeil JL, Franche C, Kane A, Bogusz D, Diouf D, Duponnois R, Svistoonoff S (2011) Uvitex2B: a rapid and efficient stain for detection of arbuscular mycorrhizal fungi within plant roots. Mycorrhiza 21:315–321

    Article  PubMed  Google Scholar 

  • Dickson S, Smith FA, Smith SE (2007) Structural differences in arbuscular mycorrhizal symbioses: more than 100 years after Gallaud, where next? Mycorrhiza 17:375–393

    Article  CAS  PubMed  Google Scholar 

  • Daft MJ,  Nicolson TH (1969) Effect of endogone mycorrhiza on plant growth: II. Influence of soluble phosphate on endophyte and host in maize. New Phytologist 68(4):945-952. https://doi.org/10.1007/s00572-021-01053-2952

  • Dreher D, Baldermann S, Schreiner M, Hause B (2019) An arbuscular mycorrhizal fungus and a root pathogen induce different volatiles emitted by Medicago truncatula roots. J Adv Res 19:85–90

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Durall D, Todd A, Trappe J (1994) Decomposition of 14C-labelled substrates by ectomycorrhizal fungi in association with Douglas fir. New Phytol 127:725–729

    Article  CAS  PubMed  Google Scholar 

  • Egerton-Warburton LM, Johnson NC, Allen EB (2007) Mycorrhizal community dynamics following nitrogen fertilization: a cross-site test in five grasslands. Ecol Monogr 77(4):527–544

    Article  Google Scholar 

  • Farmer M, Li X, Feng G, Zhao B, Chatagnier O, Gianinazzi S, Gianinazzi-Pearson V, van Tuinen D (2007) Molecular monitoring of field-inoculated AMF to evaluate persistence in sweet potato crops in China. Appl Soil Ecol 35:599–609

    Article  Google Scholar 

  • Fitter A, Graves J, Watkins N, Robinson D, Scrimgeour C (1998) Carbon transfer between plants and its control in networks of arbuscular mycorrhizas. Funct Ecol 12:406–412

    Article  Google Scholar 

  • Frank A (1877) Uber die biologischen Verhâltnisse des Thallus einiger Krustenflechten. Beiträge Zur Biologie Der Pflanzen 2:123–200

    Google Scholar 

  • Frank A (1885) Uber Die Auf Wurzelsymbiose Beruhende Ernährung Gewisser Baüme Durch Unterirdische Pilze 3:128–145

    Google Scholar 

  • Frank A (1887) Uber Neue Mycorrhiza-Formen 5:395–409

    Google Scholar 

  • Frank A (1894) Die Bedeutung der Mykorhiza für die gemeine Kiefer. Forstwiffenichaftliches Centralblatt 38:185–190

    Google Scholar 

  • Fries E (1832) Systema mycologicum: sistens fungorum ordines, genera et species, hucusque cognitas, quas ad normam methodi naturalis determinavit. Vol. III, Lundae: Ex Officina Berlingiana

  • Fries E (1849) Summa Vegetabilium Scandinaveae 2:261–572

    Google Scholar 

  • Furlan V (1993) Large scale application of endomycorrhizal fungi and technology transfer to the farmer. In: Schelkle M, ed. Peterson L. 9th NACOM, Guelph, Ontario, Canada

  • Gallaud I (1904) Etude sur les mycorrhizes endotrophes. Rev Gen Bot, pp 5–500

  • Gamper HA, van der Heijden MG, Kowalchuk GA (2010) Molecular trait indicators: moving beyond phylogeny in arbuscular mycorrhizal ecology New Phytol 185 1 67 82

  • Garbaye J, Bowen GD (1989) Stimulation of ectomycorrhizal infection of Pinus radiata by some microorganisms associated with the mantle of ectomycorrhizas. New Phytol 112:383–388

    Article  Google Scholar 

  • Garcia K, Doidy J, Zimmermann S, Wipf D, Courty P-E (2016) Take a trip through the plant and fungal transportome of mycorrhiza. Trends Plant Sci 21:937–950

    Article  CAS  PubMed  Google Scholar 

  • Gasparrini G (1856) Ricer che sulla natura dei succiatori la escrezione delle radici. G. Dura, Napoli

    Google Scholar 

  • Genre A, Russo G (2016) Does a common pathway transduce symbiotic signals in plant–microbe interactions?. Frontiers in Plant science 7:96

  • Gerdemann JW (1955) Relation of a large soil-borne spore to phycomycetous mycorrhizal infections. Mycol 7:619–632

    Article  Google Scholar 

  • Gianinazzi S, Gianinazzi-Pearson V, Dexheimer J (1979) Enzymatic studies on the metabolism ofvesicular-arbuscular mycorrhiza. III. Ultrastructural localization of acid and alkaline phosphatase in onion roots infected with Glomus mosseae (Nicol. and Gerd.). ·New Phytol 82: 127–32

  • Gianinazzi S, Gollotte A, Binet MN, van Tuinen D, Redecker D, Wipf D (2010) Agroecology: the key role of arbuscular mycorrhizas in ecosystem services. Mycorrhiza 20:519–530

    Article  PubMed  Google Scholar 

  • Gibelli G (1883) Nuovi studi sulla malattia del Castagno detta dell’inchiostro. Memorie della Accademia delle Scienze dell'Istituto di Bologna

  • Gilmore A (1971) Influence of endotrophic mycorrhizae on the growth of peach seedlings. Amer Soc Hort Sci J 96:35–38

    Article  Google Scholar 

  • Giovannetti M, Mosse B (1980) An evaluation of techniques for measuring vesicular arbuscular mycorrhizal infection in roots. New Phytol 84:489–500

    Article  Google Scholar 

  • Gollotte A, van Tuinen D, Atkinson D (2004) Diversity of arbuscular mycorrhizal fungi colonising roots of the grass species Agrostis capillaris and Lolium perenne in a field experiment. Mycorrhiza 14:111–117

    Article  PubMed  Google Scholar 

  • Grman E (2012) Plant species differ in their ability to reduce allocation to non-beneficial arbuscular mycorrhizal fungi. Ecology 93(4):711–718

    Article  PubMed  Google Scholar 

  • Hacskaylo E (2017) The Melin school: a personal memoir by Edward Hacskaylo. Mycorrhiza 27:75–80

    Article  PubMed  Google Scholar 

  • Harley J, Smith S (1983) Mycorrhizal symbiosis. Academic Press, New York

    Google Scholar 

  • Harrison R (1955) A method of isolating vesicular-arbuscular endophytes from roots. Nature 175:432

    Article  Google Scholar 

  • Harrison M, Dewbre G, Liu J (2002) A phosphate transporter from Medicago truncatula involved in the acquisition of phosphate released by arbuscular mycorrhizal fungi. Plant Cell 14:2413–2429

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hart M, Antunes P, Chaudhary V, Abbott L (2017) Fungal inoculants in the field: is the reward greater than the risk? Functional Ecology, 1–10

  • Hartig T (1840) Luft-, Boden- und Pflanzenkunde in ihrer Anwendung auf Forstwirtschaft und Gartenbrau: für alle Freunde und Pfleger der wissenschaftlichen Botanik, Vol. I, 11th edn. Cotta, Stuttgart

  • Hartig R (1888) Die pflanzlichen Wurzelparasiten. Allgemeine Forst Und Jagdzeitung Journal 64:118–123

    Google Scholar 

  • Hatch A (1937) The physical basis of mycotrophy in Pinus. The Black Rock Forest 6:1–168

    Google Scholar 

  • Hawker L, Ham A (1957) Vesicular-Arbuscular Mycorrhizas in Apple Seedlings. Nature 180:998–999

    Article  Google Scholar 

  • Hawker LE, Harrison RW, Nicholls VO, Ham AM (1957) Studies on vesicular-arbuscular endophytes. I. A strain of Pythium ultimum Trow. In roots of Allium ursinum L. and other plants. Trans Br Mycol Soc 40:375–390

    Article  Google Scholar 

  • Hayman D (1974) Plant growth responses to vesicular arbuscular mycorrhiza. New Phytol 73:71–80

    Article  Google Scholar 

  • Helber N, Wippel K, Sauer N, Schaarschmidt S, Hause B, Requena N (2011) A versatile monosaccharide transporter that operates in the arbuscular mycorrhizal fungus Glomus sp is crucial for the symbiotic relationship with plants. Plant Cell 23(10):3812–3823

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Helgason T, Fitter AH (2009) Natural selection and the evolutionary ecology of the arbuscular mycorrhizal fungi (Phylum Glomeromycota). J Exp Bot 60:2465–2480

    Article  CAS  PubMed  Google Scholar 

  • Herr JM (1971) A new clearing-squash technique for the study of ovule development in angiosperms. Am J Bot 58:785–790

    Article  Google Scholar 

  • Herr JM (1974) A clearing squash technique for the study of the ovule and megagametophyte development in angiosperms. In: Radford AE, Dickinson C, Massey JR, Bell CR (eds) Vascular plant systematics. Harper and Row, New York, pp 230–235

    Google Scholar 

  • Hetrick BAD, Wilson GWT, Cox TS (1993) Mycorrhizal dependence of modern wheat cultivars and ancestors - a synthesis. Can J Bot 71:512–518

    Article  Google Scholar 

  • Hesselman H (1900) Om mykorrhizabildningar hos arktiska växter. Bihang till Svenska Vetenskaps Akademiens Handlingar 26:1–46

    Google Scholar 

  • Hildebrand AA, Koch LW (1936) A microscopical study of the infection of the roots of strawberry and tobacco seedlings by microorganisms of the soil. Can J Res 14:11–26

    Article  Google Scholar 

  • Holevas CD (1966) The effect of a vesicular-arbuscular mycorrhiza on the uptake of soil phosphorus by strawberry (Fragaria sp. var. Cambridge Favourite). Hortic Sci 41:57–64

    Article  Google Scholar 

  • Horisberger M, Vonlanthen M (1980) Ultrastructural localization of soybean agglutinin on thin sections of Glycine max (soybean) var. Altona by the Gold Method Histochemistry 65:181–186

    CAS  PubMed  Google Scholar 

  • Hu W, Pan L, Chen H, Tang M (2020) VBA–AMF: a VBA program based on the magnified intersections method for quantitative recording of root colonization by arbuscular mycorrhizal fungi. Indian Journal of Microbiology 60:374–378

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Islam M, Germida J, Walley F (2021) Survival of a commercial AM fungal inoculant and its impact on indigenous AM fungal communities in field soils, Applied Soil Ecology, 166

  • Jack C, Petipas R, Cheeke T, Rowland J, Friesen M (2020) Microbial inoculants: silver bullet or microbial Jurassic Park? Trends Microbiol 29:299–308

    Article  PubMed  Google Scholar 

  • Jakobsen I, Rosendahl L (1990) Carbon flow into soil and external hyphae from roots of mycorrhizal cucumber plants. New Phytol 115(1):77–83

    Article  Google Scholar 

  • Jakobsen I, Abbott L, Robson A (1992) External hyphae of vesicular-arbuscular mycorrhizal fungi associated with Trifolium subterraneum L. 1. Spread of hyphae and phosphorus inflow into roots. New Phytol 120:371–380

    Article  CAS  Google Scholar 

  • Janes B (1962) Leaf-clearing technique to assist fungal spore germination counts. Nature 193:1099–1100

    Article  CAS  PubMed  Google Scholar 

  • Janse J (1897) Les endophytes radicaux de quelques plantes Javanaises. Ann Jard Bot Buitenzorg 14:53–201

    Google Scholar 

  • Janos D (1988) Mycorrhiza applications in tropical forestry: are temperate-zone approaches appropriate? Pages 133–188 in F. S. P. Ng, editor. Trees and Mycorrhiza, Forest Research Institute, Malaysia, Kuala Lumpur, Malaysia.

  • Johnston A (1949) Vesicular-arbuscular mycorrhiza in sea island cotton and other tropical plants. Trop Agric 26:118–121

    Google Scholar 

  • Johnson NC, Gibson KS (2021) Understanding multilevel selection may facilitate management of arbuscular mycorrhizae in sustainable agroecosystems. Front Plant Sci 11:627345. https://doi.org/10.3389/fpls.2020.627345

    Article  PubMed  PubMed Central  Google Scholar 

  • Johnson NC, Graham JH, Smith FA (1997) Functioning of mycorrhizal associations along the mutualism–parasitism continuum. The New Phytologist 135(4):575-585

  • Jones F (1924) A mycorrhizal fungus in the roots of legumes and some other plants. J Agric Res 29:459–470

    Google Scholar 

  • Kamiensky F (1882) Les organes végétatifs du Monotropa hypopitys L. Extrait Des Mémoires De La Société Nationale Des Sciences Naturelles Et Mathématiques De Cherbourg 24:5–40

    Google Scholar 

  • Kelley A (1932) The literature of mycorrhizae. U.S. Dept. Agr. Library, Washington DC pp 1–948

  • Kessel SL (1927) Soil Organisms. The dependence of certain pine species on a biological soil factor. Emp for J 6:70–74

    Google Scholar 

  • Kiers ET, Duhamel M, Beesetty Y, Mensah JA, Franken O, Verbruggen E et al (2011) Reciprocal rewards stabilize cooperation in the mycorrhizal symbiosis. Science 333:880–882

    Article  CAS  PubMed  Google Scholar 

  • Koch LW (1935) Recent investigations on tobacco root rot in Canada. Can J for Res 13:174–186

    Article  Google Scholar 

  • Kohout P, Sudová R, Janoušková M, Čtvrtlíková M, Hejda M, Pánková H, Slavíková R, Štajerová K, Vosátka M, Sykorová Z (2014) Comparison of commonly used primer sets for evaluating arbuscular mycorrhizal fungal communities: is there a universal solution? Soil Biol Biochem 68:482–493

    Article  CAS  Google Scholar 

  • Koide R, Mosse B (2004) A history of research on arbuscular mycorrhiza. Mycorrhiza 14:145–163

    Article  PubMed  Google Scholar 

  • Konvalinková T, Püschel D, Janoušková M, Gryndler M, Jansa J (2015) Duration and intensity of shade differentially affects mycorrhizal growth- and phosphorus uptake responses of Medicago truncatula. Front Plant Sci 6:65

    Article  PubMed  PubMed Central  Google Scholar 

  • Konvalinková T, Jansa J (2016) Lights off for arbuscular mycorrhiza: on its symbiotic functioning under light deprivation. Front Plant Sci 7:782

    Article  PubMed  PubMed Central  Google Scholar 

  • Kowalchuk GA, Drigo B, Yergeau E, van Veen JA (2006) Assessing bacterial and fungal community structure in soil using ribosomal RNA and other structural gene markers. In: Nannipieri P, Smalla K, eds. Soil biology: nucleic acids and proteins in soil. Berlin-Heidelberg, Germany: Springer-Verlag, 8: 159–188.

  • Kough J, Gianinazzi-Pearson V, Gianinazzi S (1987) Depressed metabolic activity of vesicular-arbuscular mycorrhizal fungi after fungicide applications. New Phytol 106:707–715

    Article  CAS  PubMed  Google Scholar 

  • Krüger M, Stockinger H, Krüger C, Schüßler A (2009) DNA-based species level detection of Glomeromycota: one PCR primer set for all arbuscular mycorrhizal fungi. New Phytol 183:212–223

    Article  PubMed  Google Scholar 

  • Krüger M, Teste FP, Laliberté E, Lambers H, Coghlan M, Zemunik G, Bunce M (2015) The rise and fall of arbuscular mycorrhizal fungal diversity during ecosystem retrogression. Mol 24:4912–4930

    Google Scholar 

  • Leake J, Johnson D, Donnelly D, Muckle G, Boddy L, Read D (2004) Networks of power and influence: the role of mycorrhizal mycelium in controlling plant communities and agroecosystem functioning. Can J Bot 82:1016–1045

    Article  Google Scholar 

  • Lee J, Lee S, Young JPW (2008) Improved PCR primers for the detection and identification of arbuscular mycorrhizal fungi. FEMS Microbiol Ecology 65:339–349

    Article  CAS  Google Scholar 

  • Lohman M (1927) Occurrence of mycorrhiza in Iowa forest plants. Dissertation, University of Iowa Studies in Natural History

  • Lumini E, Orgiazzi A, Borriello R, Bonfante P, Bianciotto V (2010) Disclosing arbuscular mycorrhizal fungal biodiversity in soil through a land-use gradient using a pyrosequencing approach. Environ Microbiology 12:2165–2179

    CAS  Google Scholar 

  • Macdonald R, Lewis M (1978) The occurrence of some acid phosphatases and dehydrogenases in the vesicular-arbuscular mycorrhizal fungus Glomus mosseae. New Phytol 80:135–141

    Article  CAS  Google Scholar 

  • Magrou J (1946) Sur la culture de quelques champignons de mycorrhizes à arbuscules et à vésicules. Rev Gen Bot 53:49–77

    Google Scholar 

  • Margulis L, Fester R (1991) Symbiosis as a source of evolutionary innovation: speciation and morphogenesis. MIT Press

    Google Scholar 

  • Masui K (1927) A study of the ectotrophic mycorrhizas of woody plants. Dissertation. University of Kyoto Ser B 3:149–279

    Google Scholar 

  • Mateus I, Masclaux F, Aletti C, Rojas E, Savary R, Dupuis C, Sanders I (2019) Dual RNA-seq reveals large-scale non-conserved genotype × genotype-specific genetic reprograming and molecular crosstalk in the mycorrhizal symbiosis. ISME J 13:1226–1238

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • May RM (1974) On the theory of niche overlap. Theor Popul Biol 5:297–332

    Article  CAS  PubMed  Google Scholar 

  • May RM, MacArthur RH (1972) Niche overlap as a function of environmental variability. Proceedings of the National Academy of Sciences USA 69:1109–1113

    Article  CAS  Google Scholar 

  • McArdle R (1932) The relation of mycorrhizae to conifer seedlings. J Agric Res 44:287–316

    Google Scholar 

  • McDougall W (1922) Mycorrhizas of Coniferous Trees J for 20:255–260

    Google Scholar 

  • Melin E (1917) Studier over de Norrlandska Myrmarkernas vegetation: Med Sarskild Hansyn Till Deras skogsvegetation efter torrlaggning. Uppsala Akademia Avh, Sweden

    Book  Google Scholar 

  • Melin E (1923) Experimentelle untersuchungen über die Konstitution and ökologie der Mykorrhizen von Pinus sylvestris und Picea abies. Mykologia Unterschied Ber Von R Falk 2:2–331

    Google Scholar 

  • Melin E (1924) Uber den Einfluss der Wasserstoffionenkonzentration auf die Virulenz der Wurzelpilze von Kiefer und Fichte. Botaniska Notiser, pp 38–48

  • Melin E (1925) Untersuchungen über die Bedeutung Der Baummykorriza. G . Fischer, Jena, 152 pp

  • Melin E (1927) Studier iiver Barrtradsplantans utveckling i rahumus. (Meddel. f. staten-s Skogsfiirsiiksanst 23:433-494, fig. 1-26, tab. 1-5.)

  • Melin E, Nilsson H (1950) Transfer of radioactive phosphorus to pine seedlings by means of mycorrhizal hyphae. Physiol Plant 3:88–92

    Article  Google Scholar 

  • Melin E, Nilsson H (1957) Transport of Cl4-labelled photosynthate to the fungal associate of pine mycorrhiza. Sven Bot Tidskr 51:166–186

    CAS  Google Scholar 

  • Menge JA (1985) Developing widescale VA mycorrhizal inoculations: is it practical or necessary? In: Molina R, ed. Proceedings of the 6th North American conference on Mycorrhizae. Oregon State University, Corvallis, Oregon

  • Morton J (1990) Evolutionary relationships among arbuscular mycorrhizal fungi in the Endogonaceae. Mycologia 82:192–207

    Article  Google Scholar 

  • Mosse B (1953) Fructifications associated with mycorrhizal strawberry roots. Nature 171:974–974

    Article  CAS  PubMed  Google Scholar 

  • Mosse B (1956) Fructifications of an endogone species causing endotrophic mycorrhiza in fruit plants. Ann Bot 20:349–362

    Article  Google Scholar 

  • Mosse B (1957) Growth and chemical composition of mycorrhizal and non-mycorrhizal apples. Nature 179:922

    Article  CAS  Google Scholar 

  • Mosse B (1959) Observations on the extramatrical mycelium of a vesicular-arbuscular endophyte. Trans Br Mycol Soc 42:439–448

    Article  Google Scholar 

  • Mosse B, Hayman D (1971) Plant growth responses to vesicular-arbuscular mycorrhiza. New Phytol 70:29–34

    Article  Google Scholar 

  • Mugnier J, Mosse B (1987) Vesicular-arbuscular mycorrhizal infection in transformed root-inducing T-DNA roots grown axenically. Phytopathology 77:1045–1050

    Article  Google Scholar 

  • Mullis K, Faloona F, Scharf S, Saiki R, Horn G, Erlich H (1986) Specific enzymatic amplification of DNA in vitro: the polymerase chain reaction. Cold Spring Harb Symp Quant Biol 51(Pt 1):263–273

    Article  CAS  PubMed  Google Scholar 

  • Newman EI (1966) A method of estimating the total length of root in a sample. The Journal of Applied Ecology 3:139

    Article  Google Scholar 

  • Nicholls VO (1952) Studies on the association between certain soil fungi and the roots of some members of the Liliiflorae. PhD dissertation, Department of Botany, University of Bristol

  • Nicolson T (1959) Mycorrhizae in the Graminae. I. Vesicular arbuscular endophytes, with special reference to the external phase. Trans Br Mycol Soc 42:421–438

    Article  Google Scholar 

  • Nicolson T, Gerdemann J (1968) Mycorrhizal endogone species. Mycologia 60:313–325

    Article  Google Scholar 

  • Olsson PA, Rahm J, Aliasgharzad N (2010) Carbon dynamics in mycorrhizal symbioses is linked to carbon costs and phosphorus benefits. FEMS Microbiol Ecol 72(1):125–131

    Article  PubMed  Google Scholar 

  • O’Brien D, McNaughton E (1928) Endotrophic mycorrhiza of strawberries and its significance. Research Bulletin - West of Scotland Agricultural College 1:1–32

    Google Scholar 

  • Öpik M, Davison J, Moora M, Pärtel M, Zobel M (2016) Response to comment on “global assessment of arbuscular mycorrhizal fungus diversity reveals very low endemism.” Science 351:826–826

    Article  PubMed  Google Scholar 

  • Öpik M, Moora M, Liira J, Zobel M (2006) Composition of root-colonizing arbuscular mycorrhizal fungal communities in different ecosystems around the globe. J Ecol 94:778–790

    Article  Google Scholar 

  • Öpik M, Vanatoa A, Vanatoa E, Moora M, Davison J, Kalwij JM et al (2010) The online database MaarjAM reveals global and ecosystemic distribution patterns in arbuscular mycorrhizal fungi (Glomeromycota). New Phytologist 188(1):223–241

  • Paulson R (1924) Tree mycorrhiza. Trans Br Mycol Soc 9:213–218

    Article  Google Scholar 

  • Pauwels R, Jansa J, Püschel D et al (2020) Root growth and presence of Rhizophagus irregularis distinctly alter substrate hydraulic properties in a model system with Medicago truncatula. Plant Soil 457:131–151

    Article  CAS  Google Scholar 

  • Pessin LJ (1928) Mycorrhiza of Southern pines. Ecology 9:28–33

    Article  Google Scholar 

  • Peyret-Guzzon M, Stockinger H, Bouffaud M, Farcy P, Wipf D, Redecker D (2016) Arbuscular mycorrhizal fungal communities and Rhizophagus irregularis populations shift in response to short-term ploughing and fertilisation in a buffer strip. Mycorrhiza 26:33–46

    Article  CAS  PubMed  Google Scholar 

  • Peyronel B (1923) Fructification de l’endophyte à arbuscules et à vesicules des mycorhizes endotrophes. Bulletin De La Société Mycologique De France 39:119–126

    Google Scholar 

  • Peyronel B (1924) Specie di “Endogone” produttrici di micorrize endotrofiche. Boll Staz Patol Veg Roma 5:73–75

    Google Scholar 

  • Peyronel B (1937) Le “Endogone” quasi produttrici di micorrize endotrofiche nelle Fanerogame alpestri. Nuovo Giornale Botanico Italiano N S 44:584–586

    Article  Google Scholar 

  • Peyronel B (1940) Prime osservazioni sui rapporti traluce e simbiosi micorrizica. Annuar Lab 4:3–19

    Google Scholar 

  • Peyronel B (1950) L’étude des mycorhizes par l’observation directe. Proceedings of the Seventh International Botanical Congress, Stockholm 1950:436–438

    Google Scholar 

  • Pfeffer W (1877) Ueber fleischfressende Pflanzen und über die Ernährung durch Aufnahme organischer Stoffe überhaupt. Landwirtschaftl Jahrbuch 6:969–998

    Google Scholar 

  • Pfeffer P, Douds D Jr, Bécard G, Shachar-Hill Y (1999) Carbon uptake and the metabolism and transport of lipids in an arbuscular mycorrhiza. Plant Physiol 120:587–598

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Phillips J, Hayman D (1970) Improved procedures for clearing roots and staining parasitic and vesicular-arbuscular mycorrhizal fungi for rapid assessment of infection. Trans Br Mycol Soc 55:158–161

    Article  Google Scholar 

  • Pivato B, Mazurier S, Lemanceau P, Siblot S, Berta G, Mougel C, van Tuinen D (2007) Medicago species affect the community composition of arbuscular mycorrhizal fungi associated with roots. New Phytol 176:197–210

    Article  CAS  PubMed  Google Scholar 

  • Raab PA, Brennwald A, Redecker D (2005) Mitochondrial large ribosomal subunit sequences are homogeneous within isolates of glomus (arbuscular mycorrhizal fungi, Glomeromycota). Mycol Res 109:1315–1322

    Article  CAS  PubMed  Google Scholar 

  • Rausch C, Daram P, Brunner S, Jansa J, Laloi M, Leggewie G, Amrhein N, Bucher M (2001) A phosphate transporter expressed in arbuscule-containing cells in potato. Nature 414:462–470

    Article  CAS  PubMed  Google Scholar 

  • Read D (1987) In support of Frank’s organic nitrogen theory. Angew Bot 61:25–37

    Google Scholar 

  • Redecker D (2000a) Specific PCR primers to identify arbuscular mycorrhizal fungi within colonized roots. Mycorrhiza 10(2):73-80

  • Redecker D, Kodner R, Graham LE (2000) Glomalean fungi from the Ordovician. Science 289(5486):1920–1921

    Article  CAS  PubMed  Google Scholar 

  • Reess M (1880) Ueber den Parasitismus von Elaphomyces granulatus. (Sitz.-ber. d. phys. med. Soc. z. Erlangen. 12 Heft. p. 103–107

  • Renaut S, Daoud R, Masse JV, Hijri AM (2020) Inoculation with Rhizophagus Irregularis does not alter arbuscular mycorrhizal fungal community structure within the roots of corn, wheat, and soybean crops. Microorganisms 8:83

    Article  CAS  PubMed Central  Google Scholar 

  • Richards B (1965) Mycorrhiza development of loblolly pine seedlings in relation to soil reaction and the supply of nitrate. Plant Soil 22:187–199

    Article  Google Scholar 

  • Ritz K, Newman E (1985) Evidence for rapid cycling of phosphorus from dying roots to living plants. Oikos 45:174–180

    Article  Google Scholar 

  • Rodriguez A, Sanders I (2015) The role of community and population ecology in applying mycorrhizal fungi for improved food security. ISME J 9:1053–1061

    Article  PubMed  Google Scholar 

  • Ropars J, Toro K, Noel J, Pelin A, Charron P, Farinelli L, Marton T, Krüger M, Fuchs J, Brachmann A et al (2016) Evidence for the sexual origin of heterokaryosis in arbuscular mycorrhizal fungi. Nat Microbiol 1:16033

    Article  CAS  PubMed  Google Scholar 

  • Ross JP, Harper JA (1970) Effect of Endogone mycorrhiza on soybean yields. Phytopathology 60:1552–1556

    Article  CAS  Google Scholar 

  • Salvioli A, Ghignone S, Novero M, Navazio L, Venice F, Bagnaresi P, Bonfante P (2016) Symbiosis with an endobacterium increases the fitness of a mycorrhizal fungus, raising its bioenergetic potential. ISME J 10:130–144

    Article  CAS  PubMed  Google Scholar 

  • Samuel G (1926) Note on the distribution of mycorrhiza. Transactions, Proceedings and Reports of the Royal Society of South Australia 50:245–246

    Google Scholar 

  • Sánchez-Castro I, Gianinazzi-Pearson V, Cleyet-Marel JC, Baudoin E, van Tuinen D (2017) Glomeromycota communities survive extreme levels of metal toxicity in an orphan mining site. Sci Total Environ 598:121–128

    Article  PubMed  Google Scholar 

  • Sanders F, Mosse B, Tinker PB (1975) Endomycorrhizas. Proceedings of a symposium held at the University of Leeds, 22–25 July 1974. Academic Press, London

  • Sanders F, Tinker PB (1971) Mechanism of absorption of phosphate from soil by Endogone mycorrhizas. Nature 233:278–279

    Article  CAS  PubMed  Google Scholar 

  • Sarauw G (1893) Ueber die Mykorrhizen unserer Waldbiiume. Botanisches Centralblatt Kassel 53:343–345

    Google Scholar 

  • Sawers R, Gebreselassie M, Janos D, Paszkowski U (2010) Characterizing variation in mycorrhiza effect among diverse plant varieties Theor Appl Genet 120 1029 1039

  • Schacht H (1853) Der Baum Studien über Bau und Leben der höheren Gewächse Berlin

  • Schacht H (1854) Beitriige zur Anatomie und Physiologie der Gewiichse. IV. Zur Entwickelungsgeschichte der Monotropa Hypopitys L., (p. 54–64, fig. 5.) VIII. Über die Fortpflanzung der deutschen Orchideen durch Knospen (p. 115–147, fig. 7–8.)

  • Schlaeppi K, Bender SF, Mascher F, Russo G, Patrignani A, Camenzind T, Hempel S, Rillig M, Heijden M (2016) High-resolution community profiling of arbuscular mycorrhizal fungi. New Phytol 212:780–791

    Article  CAS  PubMed  Google Scholar 

  • Schlicht A (1889) Beitrag zur Kenntniss der Verbreitung und Bedeutung der Mycorhizen. Landwirtschaftliche Jahrbücher 18:478–506

    Google Scholar 

  • Schüßler A, Gehrig H, Schwarzott D, Walker C (2001a) Analysis of partial Glomales SSU rRNA gene sequences: implications for primer design and phylogeny. Mycol Res 105:5–15

    Article  Google Scholar 

  • Schüβler A, Schwarzott D, Walker C (2001b) A new fungal phylum, the Glomeromycota: phylogeny and evolution. Mycol Res 105:1413–1421

    Article  Google Scholar 

  • Schwendener S (1869) Die Flechten als Parasiten der Algen. Verhandlungen Der Schweizerische Naturforschenden Gesellschaft Basel 5:527–550

    Google Scholar 

  • Sędzielewska Toro K, Brachmann A (2016) The effector candidate repertoire of the arbuscular mycorrhizal fungus Rhizophagus clarus. BMC Genomics 17:101

    Article  PubMed  PubMed Central  Google Scholar 

  • Shachar-Hill Y, Pfeffer P, Douds D, Osman S, Doner L, Ratcliffe R (1995) Partitioning of intermediary carbon metabolism in vesicular-arbuscular mycorrhizal leek. Plant Physiol 108:7–15

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Simard SW, Durall DM (2004) Mycorrhizal networks: a review of their extent, function, and importance. Can J Bot 82(8):1140–1165

    Article  CAS  Google Scholar 

  • Simon L, Bousquet J, Lévesque RC, Lalonde M (1993a) Origin and diversification of endomycorrhizal fungi and coincidence with vascular land plants. Nature 363:67–69

    Article  Google Scholar 

  • Simon L, Lévesque RC, Lalonde M (1993b) Identification of endomycorrhizal fungi colonizing roots by fluorescent single-strand conformation polymorphism-polymerase chain reaction. Appl Environ Microbiol 59:4211–4215

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Singh G, Tilak K (2002) Techniques of AM fungus inoculum production. In: Mukerji KG, Manoharachary C, Chamola BP, eds. Techniques in mycorrhizal studies. Dordrecht: Springer Netherlands, 273–283

  • Slankis V (1948) Einfluss von Exudaten von Boletus variegatus auf die dichotomische Verzweigung isolierter Kiefernwurzeln. Physiol Plant 1:390–400

    Article  CAS  Google Scholar 

  • Slankis V (1949) Wirkung von fl-Indolylessigsiure auf die dichotomische Verzweigung isolierter Wurzeln von Pinus sylvestris. Sven Bot Tidskr 43:603

    Google Scholar 

  • Smith S, Read D (1997) Mycorrhizal symbiosis. Academic Press

    Google Scholar 

  • Smith S, Read D (2008) Mycorrhizal symbiosis. Academic Press

    Google Scholar 

  • Smith SE, Smith FA (1990) Structure and function of the interfaces in biotrophic symbioses as they relate to nutrient transport. New Phytol 114:1–38

    Article  CAS  PubMed  Google Scholar 

  • Smith FA, Smith SE (2013) How useful is the mutualism-parasitism continuum of arbuscular mycorrhizal functioning? Plant and Soil 363(1):7-18

  • Smith SE, Smith F A, Jakobsen I (2004) Functional diversity in arbuscular mycorrhizal (AM) symbioses: the contribution of the mycorrhizal P uptake pathway is not correlated with mycorrhizal responses in growth or total P uptake. New Phytologist 162(2):511-524

  • Sparling GP, Tinker PB (1975) Mycorrhizas in Pennine grassland. In: Sanders FET, Mosse B, Tinker (eds) PBH Endomycorrhizas, Academic Press, London, pp 545-560

  • Srivastava S, Johny L, Adholeya A (2021) Review of patents for agricultural use of arbuscular mycorrhizal fungi. Mycorrhiza, 1–10

  • Stackebrandt E, Ludwig W, Schleifer KH, Gross HJ (1981a) Rapid cataloging of ribonuclease T1 resistant oligonucleotides from ribosomal RNAs for phylogenetic studies. J Mol Evol 17:227–236

    Article  CAS  PubMed  Google Scholar 

  • Stackebrandt E, Woese CR (1981b) Molecular and cellular aspects of microbial evolution, in: Collins, M.J., Moseley, B.E.B. (Eds.). Cambridge, pp. 1–31

  • Stockinger H, Peyret-Guzzon M, Koegel S, Bouffaud ML, Redecker D (2014) The largest subunit of RNA polymerase II as a new marker gene to study assemblages of arbuscular mycorrhizal fungi in the field. PLoS ONE 9:e107783–e107811

    Article  PubMed  PubMed Central  Google Scholar 

  • Stebbins GL (1938) A bleaching and clearing method for plant tissues. Science 87:21–22

    Article  PubMed  Google Scholar 

  • Stürmer S, Bever J, Schultz P et al (2021) Celebrating INVAM: 35 years of the largest living culture collection of arbuscular mycorrhizal fungi. Mycorrhiza 31:117–126

    Article  PubMed  Google Scholar 

  • Sun X, Chen W, Ivanov S, MacLean AM, Wight H, Ramaraj T, Mudge et al (2019) Genome and evolution of the arbuscular mycorrhizal fungus Diversispora epigaea (formerly Glomus versiforme) and its bacterial endosymbionts. New Phytol 221:1556–1573

    Article  CAS  PubMed  Google Scholar 

  • Sun X-G, Tang M (2013) Effect of arbuscular mycorrhizal fungi inoculation on root traits and root volatile organic compound emissions of Sorghum bicolor. S Afr J Bot 88:373–379

    Article  CAS  Google Scholar 

  • Tanabe Y, Watanabe MM, Sugiyama J (2002) Are microsporidia really related to fungi?: a reappraisal based on additional gene sequences from basal fungi. Mycol Res 106:1380–1391

    Article  CAS  Google Scholar 

  • Tang N, San Clemente H, Roy S, Bécard G, Zhao B, Roux C (2016) A survey of the gene repertoire of Gigaspora rosea unravels conserved features among Glomeromycota for obligate biotrophy. Front Microbiol 7:233

    Article  PubMed  PubMed Central  Google Scholar 

  • Tisserant E, Malbreil M, Kuo A, Kohler A, Symeonidi A, Balestrini R et al (2013) Genome of an arbuscular mycorrhizal fungus provides insight into the oldest plant symbiosis. Proceedings of the National Academy of Sciences, USA 110:20117–20122

    Article  CAS  Google Scholar 

  • Tisserant B, Gianinazzi-Pearson V, Gianinazzi S, Gollotte A (1993) In planta histochemical staining of fungal alkaline phosphatase activity for analysis of efficient arbuscular mycorrhizal infections. Mycol Res 97:245–250

    Article  CAS  Google Scholar 

  • Thaxter R (1922) A revision of the Endogoneae. Proceedings of the American Academy of Arts and Sciences 57:292–348

    Article  Google Scholar 

  • Thioye B, Redecker D, van Tuinen D, Kane A, de Faria S, Fall D, Sanogo D et al (2019) Tracing Rhizophagus irregularis isolate IR27 in Ziziphus mauritiana roots under field conditions. Mycorrhiza 29:77–83

    Article  CAS  PubMed  Google Scholar 

  • Toth R, Toth D, Starke D, Smith D (1990) Vesicular-arbuscular mycorrhizal colonization in Zea mays affected by breeding for resistance to fungal pathogens. Can J Bot 68:1039–1044

    Article  Google Scholar 

  • Trappe J (2005a) A.B. Frank and mycorrhizae: the challenge to evolutionary and ecologic theory. Mycorrhiza 15:277–281

    Article  PubMed  Google Scholar 

  • Trappe J (2005b) On the nutritional dependence of certain trees on root symbiosis with belowground fungi (an English translation of A.B. Frank’s classic paper of 1885). Mycorrhiza 15:267–275

    Article  PubMed  Google Scholar 

  • Trépanier M, Bécard G, Moutoglis P, Willemot C, Gagné S, Avis TJ, Rioux JA (2005) Dependence of arbuscular-mycorrhizal fungi on their plant host for palmitic acid synthesis. Appl Environ Microbiol 71:5341–5347

    Article  PubMed  PubMed Central  Google Scholar 

  • Trouvelot A, Kough J, Gianinazzi-Pearson V (1986) Estimation of vesicular arbuscular mycorrhizal infection levels. Research for methods having a functional significance. In: Gianinazzi-Pearson V, Gianinazzi S (eds) Physiological and genetical aspects of mycorrhizae. INRA, Paris, pp 217–222

    Google Scholar 

  • Trouvelot S, van Tuinen D, Hijri M, Gianinazzi-Pearson V (1999) Visualization of ribosomal DNA loci in spore interphasic nuclei of glomalean fungi by fluorescence in situ hybridization. Mycorrhiza 8(4):203-206

  • Tulasne L, Tulasne C (1844) Fungi nonnulli hipogaei, novi v. minus cogniti auct. G Bot Ital 2:55–63

    Google Scholar 

  • Ulrich J (1960) Auxin production by mycorrhizal fungi. Physiol Plant 13:429–443

    Article  CAS  Google Scholar 

  • Uroz S, Courty PE, Oger P (2019) Plant symbionts are engineers of the plant-associated microbiome. Trends Plant Sci 24:905–916

    Article  CAS  PubMed  Google Scholar 

  • van Aarle I, Olsson P, Söderström B (2001) Microscopic detection of phosphatase activity of saprophytic and arbuscular mycorrhizal fungi using a fluorogenic substrate. Mycologia 93:17–24

    Article  Google Scholar 

  • van Beneden P (1875) Les commensaux et les parasites dans le règne animal. Baillière, Paris

    Google Scholar 

  • van Tuinen D, Jacquot E, Zhao B, Gollotte A, Gianinazzi-Pearson V (1998a) Characterization of root colonization profiles by a microcosm community of arbuscular mycorrhizal fungi using 25S rDNA-targeted nested PCR. Mol Ecol 7:879–887

    Article  PubMed  Google Scholar 

  • van Tuinen D, Zhao B, Gianinazzi-Pearson V (1998b) PCR in studies of am fungi: from primers to application. mycorrhiza manual. Springer, Berlin Heidelberg, Berlin, Heidelberg, pp 387–400

    Chapter  Google Scholar 

  • van Verk M, Hickman R, Pieterse C, van Wees S (2013) RNA-Seq: revelation of the messengers. Trends Plant Sci 18:175–179

    Article  PubMed  Google Scholar 

  • Vandenkoornhuyse P, Husband R, Daniell TJ, Watson IJ, Duck JM, Fitter AH, Young JPW (2002) Arbuscular mycorrhizal community composition associated with two plant species in a grassland ecosystem. Mol Ecol 11:1555–1564

    Article  CAS  PubMed  Google Scholar 

  • Vierheilig H, Coughlan AP, Wyss U, Piché Y (1998) Ink and vinegar, a simple staining technique for arbuscular-mycorrhizal fungi. Appl Environ Microbiol 64:5004–5007

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Vierheilig H, Schweiger P, Brundrett M (2005) An overview of methods for the detection and observation of arbuscular mycorrhizal fungi in roots. Physiol Plant 125:393–404

    CAS  Google Scholar 

  • Vittadini C (1842) Monographia Lyperdineorum. Monographia Lycoperdineorum. Augustae Taurinorum, Torino Ser. 2, 5: 145-237

  • Voříšková A, Jansa J, Püschel D, Krüger M, Cajthaml T, Vosátka M, Janoušková M (2017) Real-time PCR quantification of arbuscular mycorrhizal fungi: does the use of nuclear or mitochondrial markers make a difference? Mycorrhiza 27:577–589

    Article  PubMed  Google Scholar 

  • Walder F, Brulé D, Koegel S, Wiemken A, Boller T, Courty PE (2015) Plant phosphorus acquisition in a common mycorrhizal network: regulation of phosphate transporter genes of the Pht1 family in sorghum and flax. New Phytol 205(4):1632–1645

    Article  CAS  PubMed  Google Scholar 

  • Walker C (1983) Taxonomic concepts in the Endogonaceae: Spore wall characteristics in species descriptions. Mycotaxon 18:443–455

    Google Scholar 

  • Waltz E (2017) A new crop of microbe startups raises big bucks, takes on the establishment Nat. Biotechnol 35(2017):1120–1122

    CAS  Google Scholar 

  • Wang E, Schornack S, Marsh JF, Gobbato E, Schwessinger B, Eastmond P et al (2012) A common signaling process that promotes mycorrhizal and oomycete colonization of plants. Curr Biol 22(23):2242–2246

    Article  CAS  PubMed  Google Scholar 

  • Wang Z, Gerstein M, Snyder M (2009) RNA-Seq: a revolutionary tool for transcriptomics. Nature reviews genetics 10(1):57-63

  • Werner G, Kiers E (2015) Partner selection in the mycorrhizal mutualism. New Phytol 205(4):1437–1442

    Article  PubMed  Google Scholar 

  • Wipf D, Krajinski F, van Tuinen D, Recorbet G, Courty P-E (2019) Trading on the arbuscular mycorrhiza market: from arbuscules to common mycorrhizal networks. New Phytol 223:1127–1142

    Article  CAS  PubMed  Google Scholar 

  • Woolhouse H (1975) Membrane structure and transport problems considered in relation to phosphorus and carbohydrate movements and the regulation of endotrophic mycorrhizal associations. In Endomycorrhizas. Eds. F ESanders, BMosse and P BTinker. pp 209–240. Academic Press, London

  • Zhu Y, Smith S, Barritt A, Smith F (2001) Phosphorus (P) efficiencies and mycorrhizal responsiveness of old and modern wheat cultivars. Plant Soil 237:249–255

    Article  CAS  Google Scholar 

  • Zouari I, Salvioli A, Chialva M, Novero M, Miozzi L, Tenore GC, Bagnaresi P, Bonfante P (2014) From root to fruit: RNA-Seq analysis shows that arbuscular mycorrhizal symbiosis may affect tomato fruit metabolism. BMC Genomics 15:221

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We are grateful to Professor Sakamoto from the Institute of Plant Science (Okayama University) for providing Asai’s articles and to Jean Garbaye, Roger Koide, François Letacon and Randy Molina for helpful discussions and providing old sources. We also are thankful to Christine Arnould and to the “Plateforme DImaCell” (Dispositif Inter-régional d’Imagerie Cellulaire Bourgogne Franche Comté) for their help with microscopic observations. We also thank Roger Koide and Jean Garbaye for critical reading of the manuscript. We also thank Gilles Bailly from the National Botanical Conservatory of Franche-Comté for his help with Pellia epiphylla hunting. We dedicate this paper to all mycorrhizologists whose hard work helped building and assembling pieces of the so exciting mycorrhiza story.

Funding

The authors acknowledge the financial support provided by the funding bodies within the H2020 ERA-net project, CORE Organic Cofund, and with cofunds from the European Commission (BIOVINE project), by the Conseil Régional de Bourgogne Franche-Comté (PUMPER project) and by the “Itinéraire Chercheurs Entrepreneurs” grant from Université Bourgogne Franche-Comté/Région Bourgogne Franche-Comté.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pierre Emmanuel Courty.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

The original online version of this article was revised: The first author's name of the this article has been presented correctly above.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sportes, A., Hériché, M., Boussageon, R. et al. A historical perspective on mycorrhizal mutualism emphasizing arbuscular mycorrhizas and their emerging challenges. Mycorrhiza 31, 637–653 (2021). https://doi.org/10.1007/s00572-021-01053-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00572-021-01053-2

Keywords

Navigation