Skip to main content

The Role of Arbuscular Mycorrhiza in the Growth and Development of Plants in the Family Gentianaceae

  • Chapter
  • First Online:
The Gentianaceae - Volume 1: Characterization and Ecology
  • 766 Accesses

Abstract

Arbuscular mycorrhiza (AM) is an ancient symbiosis between land plants and those fungi from the Phylum Glomeromycota. It is estimated to occur in a large majority of plant species, including plants from the family Gentianaceae. Arbuscular mycorrhizal fungi (AMF) colonize plant roots and in exchange for carbohydrates, they contribute to plant mineral nutrient uptake, increased water absorption , tolerance to pathogens, drought, high soil temperatures, toxic heavy metals, extremes in pH and transplant shock. AMF were also reported to have a decisive influence on plant diversity and community productivity. A large plant–fungal network may be established, because more than one plant can be colonized by the same fungal “individual” and each plant may host several fungal species. Non-photosynthetic plants, known as mycoheterotrophs, may parasitize their green neighboring plants by taking up carbohydrates from the shared fungal network. This chapter summarizes research on mycorrhiza and gentians published to date. In brief, all gentians investigated were colonized by AMF and this colonization always had a specific morphology. AMF may play an important role in the life cycle of gentians. For example, several lineages of achlorophyllous mycoheterotrophic gentians showed greatest host specificity known so far in AM. The role of AMF in the growth and development of Gentianaceae is discussed in detail.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Ahulu EM, Gollotte A, Gianinazzi-Pearson V, Nonaka M (2006) Cooccurring plants forming distinct arbuscular mycorrhizal morphologies harbor similar AM fungal species. Mycorrhiza 17:37–49

    Article  Google Scholar 

  • Azcon-Aguilar C, Encina CL, Azcon R, Barea JM (1994) Mycotrophy of Annona cherimola and the morphology of its mycorrhizae. Mycorrhiza 4:161–168

    Article  Google Scholar 

  • Bago B, Pfeffer PE, Shachar-Hill Y (2000) Carbon metabolism and transport in arbuscular mycorrhizas. Plant Physiol 124:949–957

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Barto EK, Hilker M, Muller F, Mohney BK, Weidenhamer JD, Rillig MC (2011) The fungal fast lane: common mycorrhizal networks extend bioactive zones of allelochemicals in soils. PLoS ONE 6(11):1–7. doi:ARTNe27195

    Article  Google Scholar 

  • Bidartondo MI, Redecker D, Hijri I, Wiemken A, Bruns TD, Dominguez L, Sersic A, Leake JR, Read DJ (2002) Epiparasitic plants specialized on arbuscular mycorrhizal fungi. Nature 419:389–392

    Article  CAS  PubMed  Google Scholar 

  • Cameron DD, Bolin JF (2010) Isotopic evidence of partial mycoheterotrophy in the Gentianaceae: Bartonia virginica and Obolaria virginica as case studies. Amer J Bot 97:1272–1277

    Article  Google Scholar 

  • Demuth K, Weber HC (1990) Structural incompatibility of VAM fungi in Gentianaceae. Angew Bot 64:247–252

    Google Scholar 

  • Demuth K, Forstreuter W, Weber HC (1989) Cultivation of gentians and inoculation with VAM-fungi. Angew Bot 63:551–557

    Google Scholar 

  • Demuth K, Forstreuter W, Weber HC (1991) Morphological differences in vesicular-arbuscular mycorrhizae of Gentianaceae produced by different endophytes. Flora 185:127–132

    Google Scholar 

  • Dickson S, Smith FA, Smith SE (2007) Structural differences in arbuscular mycorrhizal symbioses: more than 100 years after Gallaud, where next? Mycorrhiza 17:375–393

    Article  CAS  PubMed  Google Scholar 

  • Franke T, Beenken L, Doring M, Kocyan A, Agerer R (2006) Arbuscular mycorrhizal fungi of the Glomus-group A lineage (Glomerales; Glomeromycota) detected in myco-heterotrophic plants from tropical Africa. Mycol Prog 5:24–31

    Article  Google Scholar 

  • Gallaud I (1905) Études sur les mycorrhizes endotrophes. Revue Générale de Botanique 17:5–48, 66–83, 123–136, 23–239, 313–325, 425–433, 479–500

    Google Scholar 

  • Gay PE, Grubb PJ, Hudson HJ (1982) Seasonal changes in the concentrations of nitrogen, phosphorus and potassium, and in the density of mycorrhiza, in biennial and matrix-forming perennial species of closed chalkland turf. J Ecol 70:571–593

    Article  CAS  Google Scholar 

  • Genre A, Bonfante P (2010) The making of symbiotic cells in arbuscular mycorrhizal roots. In: Koltai H, Kapulnik Y (eds) Arbuscular mycorrhizas: physiology and function. Springer, Dordrecht, pp 57–71

    Chapter  Google Scholar 

  • Gianinazzi S, Vosátka M (2004) Inoculum of arbuscular mycorrhizal fungi for production systems: science meets business. Can J Bot 82:1264–1271

    Article  Google Scholar 

  • Gollotte A, van Tuinen D, Atkinson D (2004) Diversity of arbuscular mycorrhizal fungi colonising roots of the grass species Agrostis capillaris and Lolium perenne in a field experiment. Mycorrhiza 14:111–117

    Article  PubMed  Google Scholar 

  • Helber N, Wippel K, Sauer N, Schaarschmidt S, Hause B, Requena N (2011) A versatile monosaccharide transporter that operates in the arbuscular mycorrhizal fungus Glomus sp. is crucial for the symbiotic relationship with plants. Plant Cell 23:3812–3823

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Helgason T, Merryweather JW, Denison J, Wilson P, Young JPW, Fitter AH (2002) Selectivity and functional diversity in arbuscular mycorrhizas of co-occurring fungi and plants from a temperate deciduous woodland. J Ecol 90:371–384

    Article  Google Scholar 

  • Heymons S, Holzl J, Weber HC (1986) VA-mycorrhiza in Gentiana lutea, the importance of cultivation and influence on constituents. Planta Med 6:510

    Article  PubMed  Google Scholar 

  • Imhof S (1997) Root anatomy and mycotrophy of the achlorophyllous Voyria tenella Hook (Gentianaceae). Bot Acta 110:298–305

    Article  Google Scholar 

  • Imhof S, Weber HC (1997) Root anatomy and mycotrophy (AM) of the achlorophyllous Voyria truncata (Standley) Standley & Steyermark (Gentianaceae). Bot Acta 110:127–134

    Article  Google Scholar 

  • Jacquelinet-Jeanmougin S, Gianinazzi-Pearson V (1983) Endomycorrhizas in the Gentianaceae. 1. The fungi associated with Gentiana lutea L. New Phytol 95:663–665

    Article  Google Scholar 

  • Jacquelinet-Jeanmougin J, Gianinazzi-Pearson V, Gianinazzi S (1987) Endomycorrhizas in the Gentianaceae. 2. Ultrastructural aspects of symbiont relationships in Gentiana lutea L. Symbiosis 3:269–286

    Google Scholar 

  • Jansa J, Mozafar A, Banke S, McDonald BA, Frossard E (2002) Intra- and intersporal diversity of ITS rDNA sequences in Glomus intraradices assessed by cloning and sequencing, and by SSCP analysis. Mycol Res 106:670–681

    Article  CAS  Google Scholar 

  • Kiers ET, Duhamel M, Beesetty Y, Mensah JA, Franken O, Verbruggen E, Fellbaum CR, Kowalchuk GA, Hart MM, Bago A, Palmer TM, West SA, Vandenkoornhuyse P, Jansa J, Bucking H (2011) Reciprocal rewards stabilize cooperation in the mycorrhizal symbiosis. Science 333:880–882

    Article  CAS  PubMed  Google Scholar 

  • Klironomos JN, McCune J, Hart M, Neville J (2000) The influence of arbuscular mycorrhizae on the relationship between plant diversity and productivity. Ecol Lett 3:137–141

    Article  Google Scholar 

  • Knöbel M, Weber HC (1988) Vergleichende Untersuchungen zur Mycotrophie bei Gentiana verna L. und Voyria truncata (Stand.) Stand. & Stey. (Gentianaceae). Beitr Biol Pflanzen 63:463–477

    Google Scholar 

  • Krüger M, Stockinger H, Krüger C, Schüßler A (2009) DNA-based species level detection of Glomeromycota: one PCR primer set for all arbuscular mycorrhizal fungi. New Phytol 183:212–223

    Article  PubMed  Google Scholar 

  • Kuhn KD, Weber HC (1986) Vesicular arbuscular mycorrhiza in Gentiana asclepiadea L (Gentianaceae) on natural habitats. Angew Bot 60:427–439

    Google Scholar 

  • Lekberg Y, Koide RT (2005) Is plant performance limited by abundance of arbuscular mycorrhizal fungi? A meta-analysis of studies published between 1988 and 2003. New Phytol 168:189–204

    Article  CAS  PubMed  Google Scholar 

  • Mcgee PA (1985) Lack of spread of endomycorrhizas of Centaurium (Gentianaceae). New Phytol 101:451–458

    Article  Google Scholar 

  • Merckx V, Bidartondo MI, Hynson NA (2009) Myco-heterotrophy: when fungi host plants. Ann Bot 104:1255–1261

    Article  PubMed Central  PubMed  Google Scholar 

  • Merckx V, Stockel M, Fleischmann A, Bruns TD, Gebauer G (2010) 15N and 13C natural abundance of two mycoheterotrophic and a putative partially mycoheterotrophic species associated with arbuscular mycorrhizal fungi. New Phytol 188:590–596

    Article  CAS  PubMed  Google Scholar 

  • Merckx VSFT, Janssens SB, Hynson NA, Specht CD, Bruns TD, Smets EF (2012) Mycoheterotrophic interactions are not limited to a narrow phylogenetic range of arbuscular mycorrhizal fungi. Mol Ecol 21:524–1532

    Article  Google Scholar 

  • Munkvold L, Kjoller R, Vestberg M, Rosendahl S, Jakobsen I (2004) High functional diversity within species of arbuscular mycorrhizal fungi. New Phytol 164:357–364

    Article  Google Scholar 

  • Neumann G (1934) Über die Mykorrhiza in der Gattung Gentiana. Zlb Bakt 89:433–458

    Google Scholar 

  • Öpik M, Moora M, Zobel M, Saks U, Wheatley R, Wright F, Daniell T (2008) High diversity of arbuscular mycorrhizal fungi in a boreal herb-rich coniferous forest. New Phytol 179:867–876

    Article  PubMed  Google Scholar 

  • Öpik M, Metsis M, Daniell TJ, Zobel M, Moora M (2009) Large-scale parallel 454 sequencing reveals host ecological group specificity of arbuscular mycorrhizal fungi in a boreonemoral forest. New Phytol 184:424–437

    Article  PubMed  Google Scholar 

  • Parniske M (2008) Arbuscular mycorrhiza: the mother of plant root endosymbioses. Nat Rev Microbiol 6:763–775

    Article  CAS  PubMed  Google Scholar 

  • Pellegrino E, Turrini A, Gamper HA, Cafa G, Bonari E, Young JPW, Giovannetti M (2012) Establishment, persistence and effectiveness of arbuscular mycorrhizal fungal inoculants in the field revealed using molecular genetic tracing and measurement of yield components. New Phytol 194:810–822

    Article  CAS  PubMed  Google Scholar 

  • Redecker D, Kodner R, Graham LE (2000) Glomalean fungi from the Ordovician. Science 289:1920–1921

    Article  CAS  PubMed  Google Scholar 

  • Rillig MC, Mummey DL (2006) Mycorrhizas and soil structure. New Phytol 171:41–53

    Article  CAS  PubMed  Google Scholar 

  • Rosendahl S, Mcgee P, Morton JB (2009) Lack of global population genetic differentiation in the arbuscular mycorrhizal fungus Glomus mosseae suggests a recent range expansion which may have coincided with the spread of agriculture. Mol Ecol 18:4316–4329

    Article  PubMed  Google Scholar 

  • Sanders IR, Alt M, Groppe K, Boller T, Wiemken A (1995) Identification of ribosomal DNA polymorphisms among and within spores of the Glomales: application to studies on the genetic diversity of arbuscular mycorrhizal fungal communities. New Phytol 130:419–427

    Article  CAS  Google Scholar 

  • Santos JC, Finlay RD, Tehler A (2006) Molecular analysis of arbuscular mycorrhizal fungi colonising a semi-natural grassland along a fertilisation gradient. New Phytol 172:159–168

    Article  CAS  PubMed  Google Scholar 

  • Schüßler A, Walker C (2010) The Glomeromycota: a species list with new families and new genera. Avaible at www.amf-phylogeny.com

  • Schüßler A, Schwarzott D, Walker C (2001) A new fungal phylum, the Glomeromycota: phylogeny and evolution. Mycol Res 105:1413–1421

    Article  Google Scholar 

  • Schwartz MW, Hoeksema JD, Gehring CA, Johnson NC, Klironomos JN, Abbott LK, Pringle A (2006) The promise and the potential consequences of the global transport of mycorrhizal fungal inoculum. Ecol Lett 9:501–515

    Article  PubMed  Google Scholar 

  • Schwarzott D, Walker C, Schüßler A (2001) Glomus, the largest genus of the arbuscular mycorrhizal fungi (Glomales), is nonmonophyletic. Mol Phylogenet Evol 21:190–197

    Article  CAS  PubMed  Google Scholar 

  • Smith SE, Read DJ (2008) Mycorrhizal symbiosis, 3rd edn. Academic Press, Elsevier, Oxford, pp 1–765

    Book  Google Scholar 

  • Smith FA, Smith SE (1997) Tansley review No. 96. Structural diversity in (vesicular)-arbuscular mycorrhizal symbioses. New Phytol 137:373–388

    Article  Google Scholar 

  • Smith SE, Smith FA (2012) Fresh perspectives on the roles of arbuscular mycorrhizal fungi in plant nutrition and growth. Mycologia 104:1–13

    Article  PubMed  Google Scholar 

  • Smith FA, Grace EJ, Smith SE (2009) More than a carbon economy: nutrient trade and ecological sustainability in facultative arbuscular mycorrhizal symbioses. New Phytol 182:347–358

    Article  CAS  PubMed  Google Scholar 

  • Sýkorová Z, Rydlová J, Vosátka M (2003) Establishment of mycorrhizal symbiosis in Gentiana verna. Folia Geobot 38:177–189

    Article  Google Scholar 

  • Sýkorová Z, Wiemken A, Redecker D (2007) Cooccurring Gentiana verna and Gentiana acaulis and their neighboring plants in two Swiss upper montane meadows harbor distinct arbuscular mycorrhizal fungal communities. Appl Environ Microb 73:5426–5434

    Article  Google Scholar 

  • Sýkorová Z, Börstler B, Zvolenská S, Fehrer J, Gryndler M, Vosátka M, Redecker D (2012) Long-term tracing of Rhizophagus irregularis isolate BEG140 inoculated on Phalaris arundinacea in a coal mine spoil bank, using mitochondrial large subunit rDNA markers. Mycorrhiza 22:69–80

    Article  PubMed  Google Scholar 

  • van der Heijden MGA, Klironomos JN, Ursic M, Moutoglis P, Streitwolf-Engel R, Boller T, Wiemken A, Sanders IR (1998) Mycorrhizal fungal diversity determines plant biodiversity, ecosystem variability and productivity. Nature 396:69–72

    Article  Google Scholar 

  • Wubet T, Kottke I, Teketay D, Oberwinkler F (2009) Arbuscular mycorrhizal fungal community structures differ between co-occurring tree species of dry Afromontane tropical forest, and their seedlings exhibit potential to trap isolates suited for reforestation. Mycol Prog 8:317–328

    Article  Google Scholar 

Download references

Acknowledgments

The author thanks Miroslav Kolařík for critically reading this chapter, the Academy of Sciences of the Czech Republic (The Institutional Research Program, Grant No. AV0Z60050516) and the Czech Science Foundation (Grant No. P504/10/P021) for financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zuzana Sýkorová .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Sýkorová, Z. (2014). The Role of Arbuscular Mycorrhiza in the Growth and Development of Plants in the Family Gentianaceae. In: Rybczyński, J., Davey, M., Mikuła, A. (eds) The Gentianaceae - Volume 1: Characterization and Ecology. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-54010-3_12

Download citation

Publish with us

Policies and ethics