Skip to main content
Log in

Plant hosts may influence arbuscular mycorrhizal fungal community composition in mangrove estuaries

  • Original Article
  • Published:
Mycorrhiza Aims and scope Submit manuscript

Abstract

We investigated the role of plant host and soil variables in determining arbuscular mycorrhizal fungi (AMF) community composition in plant roots of two spatially separated mangrove estuaries on the rivers Aghanashini (14° 30′ 30″ N–74° 22′ 44″ E) and Gangavali (14° 35′ 26″ N–74° 17′ 51″ E) on the west coast of India. Both mangrove estuaries had similar plant species composition but differed in soil chemistries.

We amplified a 550-bp portion of 18S small subunit (SSU) rDNA from mangrove plant roots and analysed it by restriction fragment length polymorphism (RFLP). Clones representing unique RFLP patterns were sequenced. A total of 736 clones were obtained from roots of seven and five plant species sampled at Aghanashini and Gangavali, respectively. AMF phylotype numbers in plant roots at Aghanashini (12) were higher than at Gangavali (9) indicating quantitative differences in the AMF community composition in plant roots at the two mangrove estuaries. Because both estuaries had similar plant species composition, the quantitative difference in AMF communities between the estuaries could be an attribute of the differences in rhizospheric chemistry between the two sites.

Non-metric multidimensional scaling (NMDS) revealed overlap in the AMF communities of the two sites. Three and two AMF phylotypes had significant indicator value indices with specific hosts at Aghanashini and Gangavali, respectively. Environmental vector fitting to NMDS ordination did not reveal a significant effect of any soil variable on AMF composition at the two sites. However, significant effects of both plant hosts and sites were observed on rhizospheric P. Our results indicate that root AMF community composition may be an outcome of plant response to rhizospheric variables. This suggests that plant identity may have a primary role in shaping AMF communities in mangroves.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Allen SE, Grimshaw HM, Parkinson JA, Quaramby C (1974) Chemical analysis of ecological materials. Blackwell, Oxford

    Google Scholar 

  • Ausubel FM, Brent R, Kignston RE, Moore DD, Seidman JG et al (1999) Short protocols in molecular biology. John Wiley and Sons, New York

    Google Scholar 

  • Bernard J, Wall CB, Costantini MS et al (2021) Plant part and a steep environmental gradient predict plant microbial composition in a tropical watershed. ISME J 15:999–1009. https://doi.org/10.1038/s41396-020-00826-5

    Article  CAS  PubMed  Google Scholar 

  • Bernini E, da Silva MAB, do Carmo TMS, Cuzzuol GRF (2010) Spatial and temporal variations of the nutrients in the sediment and leaves of two Brazilian mangrove species and their role in the retention of environmental heavy metals. Braz J Plant Physiol 22:177–187. https://doi.org/10.1590/S1677-04202010000300005

    Article  Google Scholar 

  • Cáceres MD, Legendere P (2009) Associations between species and groups of sites: indices and statistical inference. Ecology 90:3566–3574

    Article  PubMed  Google Scholar 

  • Canarini A, Kaiser C, Merchant A, Richter A, Wanek W (2019) Root exudation of primary metabolites: mechanisms and their roles in plant responses to environmental stimuli. Front Plant Sci 10:157

    Article  PubMed  PubMed Central  Google Scholar 

  • Chao A, Gotelli NJ, Hsieh TC, Sander EL, Ma KH, Colwell RK, Ellison AM (2014) Rarefaction and extrapolation with Hill numbers: a framework for sampling and estimation in species diversity studies. Ecol Monogr 84:45–67

    Article  Google Scholar 

  • Chaiyasen A, Young JPW, Teaumroong N, Gavinlertvatana P, Lumyong S (2014) Characterization of arbuscular mycorrhizal fungus communities of Aquilaria crassna and Tectona grandis roots and soils in Thailand plantations. PLoS One 9(11):e112591. https://doi.org/10.1371/journal.pone.0112591

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chen PS Jr, Toribara TY, Warner H (1956) Microdetermination of phosphorous. Anal Chem 28:1756–1758

    Article  CAS  Google Scholar 

  • Curtis JT, McIntosh RP (1951) An upland forest continuum in the prairie forest border region of Wisconsin. Ecology 32:476–496

    Article  Google Scholar 

  • Davison JM, Moora M, Opik A, Adholeya A, Ainsaar L, Ba B, Burla S, Siedhiou AG, Hiiesalu I, Jairus T, Johnson NC, Kane A, Koorem K, Kochar M, Ndiaye C, Partel M, Reier U, Saks U, Singh R, Vasar M, Zobel M (2015) Global assessement of arbuscular mycorrhizal fungus diversity reveals very low endemism. Science 6251:970–973

    Article  CAS  Google Scholar 

  • Deepika S, Kothamasi D (2015) Soil moisture–a regulator of arbuscular mycorrhizal fungal community assembly and symbiotic phosphorus uptake. Mycorrhiza 25:67–75

    Article  CAS  PubMed  Google Scholar 

  • D’Souza J (2016) Arbuscular mycorrhizal diversity from mangroves: a review. In Pagano M (eds) Recent Advances on Mycorrhizal Fungi. Fungal Biol Springer, Cham

  • D’Souza J, Rodrigues BF (2013) Seasonal diversity of arbuscular mycorrhizal fungi in mangroves of Goa, India. Int J Biodivers 1–7 Article ID 196527 https://doi.org/10.1155/2013/196527.

  • Dufrène M, Legendre P (1997) Species assemblages and indicator species: the need for a flexible asymmetrical approach. Ecol Monograph 67:345–366

    Google Scholar 

  • Fester T (2013) Arbuscular mycorrhizal fungi in a wetland constructed for benzene-, methyl tert-butyl ether- and ammonia-contaminated groundwater bioremediation. Microb Biotechnol 6:80–84. https://doi.org/10.1111/j.1751-7915.2012.00357.x

    Article  CAS  PubMed  Google Scholar 

  • Gaberscik A, Dolinar N, Sraj N, Regvar M (2017) What have we learnt from studying mycorrhizal colonization of wetland plant species? In: Varma A, Prasad R, Tuteja N (eds) Mycorrhiza – Funtion, Duversity, State of the Art. Springer Cham

  • Giri C, Ochieng E, Tieszen LL, Zhu Z, Singh A, Loveland T, Masek J, Duke N (2011) Status and distribution of mangrove forests of the world using earth observation satellite data. Global Ecol Biogeogr 20:154–159

    Article  Google Scholar 

  • Guo X, Gong J (2014) Differential effects of abiotic factors and host plant traits on diversity and community composition of root-colonizing arbuscular mycorrhizal fungi in a salt-stressed ecosystem. Mycorrhiza 24:79–94. https://doi.org/10.1007/s00572-013-0516-9

    Article  PubMed  Google Scholar 

  • Hart MM, Reader R (2002) Taxonomic basis for variation in the colonization strategy of arbuscular mycorrhizal fungi. New Phytol 153:335–344

    Article  Google Scholar 

  • Hazard C, Gosling P, van der Gast CJ, Mitchell DT, Doohan FM, Bending GD (2013) The role of local environment and geographical distance in determining community composition of arbuscular mycorrhizal fungi at the landscape scale. ISME J 7:498–508

    Article  CAS  PubMed  Google Scholar 

  • Helgason T, Daniell TJ, Husband R, Fitter AH, Young JPW (1998) Ploughing up the wood-wide web? Nature 394:431

    Article  CAS  PubMed  Google Scholar 

  • Hijri I, Sykorova Z, Oehl F, Ineichen K, Mader P et al (2006) Communities of arbuscular mycorrhizal fungi in arable soils are not necessarily low in diversity. Mol Ecol 15:2277–2289

    Article  CAS  PubMed  Google Scholar 

  • Holguin G, Vazquez P, Bashan Y (2001) The role of sediment microorganisms in the productivity, conservation, and rehabilitation of mangrove ecosystems: an overview. Biol Fertil Soils 33:265–278

    Article  CAS  Google Scholar 

  • Haug I, Setaro S, Suarez JP (2021) Global AM fungi are dominating mycorrhizal communities in a tropical premontane dry forest in Laipuna, South Ecuador. Mycol Progress 20:837–845

    Article  Google Scholar 

  • Huang GM, Srivastava AK, Zou Y, Wu Q, Kuca K (2020) Exploring arbuscular mycorrhizal symbiosis in wetland plants with a focus on human impacts. Symbiosis. https://doi.org/10.1007/s13199-021-00770-8

    Article  Google Scholar 

  • Huber T, Faulkner G, Hugenholtz P (2004) Bellerophon: a program to detect chimeric sequences in multiple sequence alignments. Bioinformatics 20:2317–2319

    Article  CAS  PubMed  Google Scholar 

  • Jansa J, Erb A, Oberholzer HR, Smilauer P, Egli S (2014) Soil and geography are more important determinants of indigenous arbuscular mycorrhizal communities than management practices in Swiss agricultural soils. Mol Ecol 23:2118–2135

    Article  CAS  PubMed  Google Scholar 

  • Katoh K, Rozewicki J, Yamada KD (2019) MAFFT online service: multiple sequence alignment, interactive sequence choice and visualization. Brief Bioinform 20:1160–1166

    Article  CAS  PubMed  Google Scholar 

  • Kivlin SN, Hawkes CV, Treseder KK (2011) Global diversity and distribution of arbuscular mycorrhizal fungi. Soil Biol Biochem 43:2294–2303. https://doi.org/10.1016/j.soilbio.2011.07.012

    Article  CAS  Google Scholar 

  • Pholchan MK, Baptista JC, Davenport RJ, Sloan WT, Curtis TP (2013) Microbial community assembly, theory and rare functions. Front Microbiol 4–68 https://doi.org/10.3389/fmicb.2013.00068

  • Kohout P, Sudová R, Janoušková M, Čtvrtlíková M, Hejda M, Pánková H, Slavíková R, Štajerová K, Vosátka M, Sýkorová Z (2014) Comparison of commonly used primer sets for evaluating arbuscular mycorrhizal fungal communities: is there a universal solution? Soil Biol Biochem 68:482–493

    Article  CAS  Google Scholar 

  • Kothamasi D, Kothamasi S, Bhattacharyya A, Kuhad RC, Babu CR (2006) Arbuscular mycorrhizae and phosphate solubilising bacteria of the rhizosphere of the mangrove ecosystem of Great Nicobar Island, India. Biol Fertil Soils 42:358–361

    Article  Google Scholar 

  • Kumar S, Stecher G, Tamura K (2016) MEGA 7: Molecular evolutionary genetics analysis version 7 for bigger datasets. Mol Biol Evol 33:1870–1874

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kumar T, Ghose M (2008) Status of the arbuscular mycorrhizal fungi (AMF) in the Sundarbans of India in relation to tidal inundation and chemical properties of soil. Wet Ecol Manag 16:471–483

    Article  Google Scholar 

  • Lekberg Y, Rosendahl S, Olsson PA (2015) The fungal perspective of arbuscular mycorrhizal colonization in ‘nonmycorrhizal’ plants. New Phytol 205:1399–1403

    Article  PubMed  Google Scholar 

  • Lee J, Lee S, Young JPW (2008) Improved PCR primers for the detection and identification of arbuscular mycorrhizal fungi. FEMS Microbiol Ecol 65:339–349

    Article  CAS  PubMed  Google Scholar 

  • Li LF, Li T, Zhang Y, Zhao ZW (2010) Molecular diversity of arbuscular mycorrhizal fungi and their distribution patterns related to host-plants and habitats in a hot and arid ecosystem, southwest China. FEMS Microbiol Ecol 71:418–427

    Article  CAS  PubMed  Google Scholar 

  • Li T, Xiong Q, Luo P, Zhang Y, Gu X, Lin B (2019) Direct and indirect effects of environmental factors, spatial constraints, and functional traits on shaping the plant diversity of montane forests. Ecol Evol 10:557–568. https://doi.org/10.1002/ece3.5931

    Article  PubMed  PubMed Central  Google Scholar 

  • Lovelock CE, Feller IC, Ball MC, Engelbrecht MCB, Ewe ML (2006) Differences in plant function in phosphorus- and nitrogen-limited mangrove ecosystems. New Phytol 172:514–522

    Article  CAS  PubMed  Google Scholar 

  • Luke D, Bainard J, Bainard D, Hamel C, Gan Y (2014) Spatial and temporal structuring of arbuscular mycorrhizal communities is differentially influenced by abiotic factors and host crop in a semi-arid prairie agroecosystem. FEMS Microbiol Ecol 88:333–344. https://doi.org/10.1111/1574-6941.12300

    Article  CAS  Google Scholar 

  • Martinez-Garcia LB, Richardson SJ, Tylianakis JM, Peltzer DA, Dickie IA (2014) Host identity is a dominant driver of mycorrhizal fungal community composition during ecosystem development. New Phytol 205:1565–1576

    Article  PubMed  CAS  Google Scholar 

  • McHugh JM, Dighton J (2004) Influence of mycorrhizal inoculation, inundation period, salinity and phosphorus availability on the growth of two salt marsh grasses, Spartina alterniflora Lois. And Spartina cynosuroides (L.) Roth in Nursery Systems. Restor Ecol 12:533–545. https://doi.org/10.1111/j.1061-2971.2004.03109.x

    Article  Google Scholar 

  • Melo CD, Walker C, Krüger C, Borges PAV, Luna S, Mendonca D, Fonseca HMAC, Machado AC (2019) Environmental factors driving arbuscular mycorrhizal fungal communities associated with endemic woody plant Picconia azorica on native forest of Azores. Ann Microbiol 69:1309–1327. https://doi.org/10.1007/s13213-019-01535-x

    Article  CAS  Google Scholar 

  • Miller SP, Sharitz RR (2000) Manipulation of flooding and arbuscular mycorrhiza formation influences growth and nutrition of two semi aquatic grass species. Funct Ecol 14:738–748

    Article  Google Scholar 

  • Oksanen J, Blanchet FG, Friendly M, Kindt R, Legendre P, McGlinn D, Minchin PR, O’Hara RB, Simpson GL, Solymos P, Stevens MHH, Szoecs E, Wagner H (2019) vegan: Community Ecology Package. 2019. R package version 2.5–6

  • Öpik M, Metsis M, Daniell TJ, Zobel M, Moor M (2009) Large-scale parallel 454 sequencing reveals host ecological group specificity of arbuscular mycorrhizal fungi in a boreonemoral forest. New Phytol 184:424–437

    Article  PubMed  CAS  Google Scholar 

  • Öpik M, Moora M, Liira J, Zobel M (2006) Composition of root-colonizing arbuscular mycorrhizal fungal communities in different ecosystems around the globe. J Ecol 94:778–790

    Article  Google Scholar 

  • Öpik M, Vanatoa A, Vanatoa E, Moora M, Davison J, Kalwij JM, Reier U, Zobel M (2010) The online database MaarjAM reveals global and ecosystemic distribution patterns in arbuscular mycorrhizal fungi (Glomeromycota). New Phytol 188:223–241

    Article  PubMed  CAS  Google Scholar 

  • Rossi JP (2011) rich: An R package to analyse species richness. Diversity 3:112–120

    Article  Google Scholar 

  • Ramírez-Viga TK, Aguilar R, Castillo-Argüero S, ChiappaCarrara X, Guadarrama P, Ramos-Zapata J (2018) Wetland plant species improve performance when inoculated with arbuscular mycorrhizal fungi: a metaanalysis of experimental pot studies. Mycorrhiza 28:477–493. https://doi.org/10.1007/s00572-018-0839-7

    Article  PubMed  Google Scholar 

  • Sangabriel-Conde W, Negrete-Yankelevich S, Maldonado-Mendoza IE, Trejo-Aguilar D (2014) Native maize landraces from Los Tuxtlas, Mexico show varying mycorrhizal dependency for P uptake. Biol Fertil Soils 50:405–414

    Article  CAS  Google Scholar 

  • Schechter SP, Bruns TD (2013) A common garden test of host-symbiont specificity supports a dominant role for soil type in determining AMF assemblage structure in Collinsia sparsiflora. PLoS One 8:e55507. https://doi.org/10.1371/journal.pone.0055507

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schüßler A, Schwarzott D, Walker C (2001) A new fungal phylum, the Glomeromycota: phylogeny and evolution. Mycol Res 105:1413–1421

    Article  Google Scholar 

  • Sengupta A, Chaudhuri S (2002) Arbuscular mycorrhizal relations of mangrove plant community at the Ganges river estuary in India. Mycorrhiza 12:169–174

    Article  PubMed  Google Scholar 

  • Shreiner RP, Mihara KL (2009) The diversity of arbuscular mycorrhizal fungi amplified from grapevine roots (Vitis vinifera L.) in Oregon vineyards is seasonally stable and influenced by soil and vine age Mycologia 101:599−611

  • Simon L, Lalonde M, Bruns TD (1992) Specific amplification of 18S fungal ribosomal genes from vesicular-arbuscular endomycorrhizal fungi colonising roots. Appl Environ Microbiol 58:291–295

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Smith S, Read D (2008) Mycorrhiza symbiosis, 3rd edn. Academic Press, San Diego, CA

    Google Scholar 

  • Soka GE, Ritchie ME (2018) Arbuscular mycorrhizal spore composition and diversity associated with different land uses in a tropical savanna landscape. Tanzania Appl Soil Ecol 125:222–232

    Article  Google Scholar 

  • Sykorova Z, Ineichen K, Wiemken A, Redecker D (2007) The cultivation bias: different communities of arbuscular mycorrhizal fungi detected in roots from the field, from bait plants transplanted to the field, and from a greenhouse trap experiment. Mycorrhiza 18:1–14

    Article  CAS  PubMed  Google Scholar 

  • Thrall PH, Slattery JF, Broadhurst LM, Bickford S (2007) Geographic patterns of symbiont abundance and adaptation in native Australian Acacia–rhizobia interactions. J Ecol 95:1110–1122. https://doi.org/10.1111/j.1365-2745.2007.01278.x

    Article  Google Scholar 

  • Torrecillas E, Alguacil MM, Roldan A (2012) Host preferences of arbuscular mycorrhizal fungi colonizing annual herbaceous plant species in semiarid Mediterranean prairies. Appl Environ Microbiol 78:6180–6186

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Torrecillas E, Alguacil M, Roldan A, Diaz G, Montesinos-Navarro A, Torres MP (2014) Modularity reveals the tendency of arbuscular mycorrhizal fungi to interact differently with generalist and specialist plant species in gypsum soils. Appl Environ Microb 80:5457–5760

    Article  CAS  Google Scholar 

  • Tuheteru FD, Wu QS (2017) Arbuscular mycorrhizal fungi and tolerance of waterlogging stress in plants. In: Wu QS (eds) Arbuscular Mycorrhizas and Stress Tolerance of Plants. Springer, Singapore

  • Vályi K, Mardhiah U, Rillig M et al (2016) Community assembly and coexistence in communities of arbuscular mycorrhizal fungi. ISME J 10:2341–2351. https://doi.org/10.1038/ismej.2016.46

    Article  PubMed  PubMed Central  Google Scholar 

  • Vandenkoornhuyse P, Ridgway KP, Watson IJ, Fitter AH, Young JPW (2003) Co-existing grass species have distinctive arbuscular mycorrhizal communities. Mol Ecol 12:3085–3095

    Article  CAS  PubMed  Google Scholar 

  • Velázquez MS, Fabisik JC, Abarca CL et al (2018) Colonization dynamics of arbuscular mycorrhizal fungi (AMF) in Ilex paraguariensis crops: Seasonality and influence of management practices. J King Saud Univ - Sci. https://doi.org/10.1016/j.jksus.2018.03.017

    Article  Google Scholar 

  • Vieira LC, da Silva DKA, da Silva IR, Goncalves CM, de Assis DMA, Oehl F, da Silva GA (2019) Ecological aspects of arbuscular mycorrhizal fungal communities in different habitat types of a Brazilian mountainous area. Ecol Res 34:182–192

    Article  Google Scholar 

  • Vazquez P, Holguin G, Puente ME, Lopez-Cortes A, Bashan Y (2000) Phosphate solubilizing microorganisms associated with rhizosphere of mangroves in a semiarid coastal lagoon. Biol Fertil Soils 30:460–468

    Article  CAS  Google Scholar 

  • Walkley AJ, Black IA (1934) Estimation of soil organic carbon by the chromic acid titration method. Soil Sci 37:29–38

    Article  CAS  Google Scholar 

  • Wang Y, Qiu Q, Yang Z, Hu Z, Tam NF, Xin G (2010) Arbuscular mycorrhizal fungi in two mangroves in South China. Plant Soil 331:181–191

    Article  CAS  Google Scholar 

  • Wang Y, Huang Y, Qiu Q, Xin G, Yang Z, Shi S (2011) Flooding greatly affects the diversity of arbuscular mycorrhizal fungi communities in the roots of wetland plants. PloS One 6(9):e24512

  • Wang C, Gu Z, Cui H, Zhu H, Fu S, Yao Q (2015a) Differences in arbuscular mycorrhizal fungal community composition in soils of three land use types in subtropical hilly area of Southern China. PloS One 10:e0130983

  • Wang Y, Li T, Li Y, Qui Q, Li S, Xin G (2015b) Distribution of arbuscular mycorrhizal fungi in four semi-mangrove plant communities. Ann Microbiol 65:603–610. https://doi.org/10.1007/s13213-014-0896-x

    Article  CAS  Google Scholar 

  • Wang Y, Li Y, Li S, Rosendahl S (2021) Ignored diversity of arbuscular mycorrhizal fungi in co-occurring mycotrophic and non-mycotrophic plants. Mycorrhiza 30:93–102

    Article  CAS  Google Scholar 

  • Wilde P, Manal A, Stodden M, Sieverding E, Hildebrandt U (2009) Biodiversity of arbuscular mycorrhizal fungi in roots and soils of two salt marshes. Environ Microbiol 11:1548–1546

    Article  PubMed  Google Scholar 

  • Wirsel SGR (2004) Homogeneous stands of a wetland grass harbour diverse consortia of arbuscular mycorrhizal fungi. FEMS Microbiol Ecol 48:129–138

    Article  CAS  PubMed  Google Scholar 

  • Xu X, Chen C, Zhang Z, Sun Z, Chen Y, Jiang J, Shen Z (2017) The influence of environmental factors on communities of arbuscular mycorrhizal fungi associated with Chenopodium ambrosioides revealed by MiSeq sequencing investigation. Sci Rep 7:45134. https://doi.org/10.1038/srep45134

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xu Z, Wu C, Lv Y, Meng F, Ban Y (2021) Effects of aeration on the formation of arbuscular mycorrhiza under a flooded state and copper oxide nanoparticle removal in vertical flow constructed wetlands. Microb Ecol 81:922–931

    Article  CAS  PubMed  Google Scholar 

  • Yang H, Dai Y, Xu M, Zhang Q, Bian X, Tang J, Chen X (2016) Metadata-mining of 18S rDNA sequences reveals that “everything is not everywhere” for glomeromycotan fingi. Ann Microbiol 66:361–371

    Article  CAS  Google Scholar 

  • Yang WG, Siyu XY, Ayodeji B, Sun W, Xu X (2018) Compost addition enhanced hyphal growth and sporulation of arbuscular mycorrhizal fungi without affecting their community composition in the soil. Front Microbiol 9:169

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang SB, Wang YS, Yin XF, Liu JB, Wu FX (2017) Development of arbuscular mycorrhizal (AM) fungi and their influences on the absorption of N and P of maize at different soil phosphorus application levels. J Plant Nutr Fertil 23:649–657

    Google Scholar 

  • Zhu X, Yang W, Sun L, Song F, Li X (2021) Anthropogenic land use changes diversity and structure of arbuscular mycorrhizal fungal communities at 100-m scale in northeast China. Arch Agron Soil Sci 67:778–792

    Article  CAS  Google Scholar 

Download references

Acknowledgements

SD received a senior research fellowship from CSIR, India. DK received a Marie Skłodowska-Curie Actions Horizon 2020 Individual Fellowship, and DU-DST Purse and R&D scheme research grants from the University of Delhi. The authors thank Gurumurthi Hegde for helping with sample collection; Miquel De Cáceres for advice on use of indicspecies; and Prof. Ganesh R Hegde for hosting. We thank Dr. David P. Janos and two anonymous reviewers for comments that improved the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sharma Deepika.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Deepika, S., Kothamasi, D. Plant hosts may influence arbuscular mycorrhizal fungal community composition in mangrove estuaries. Mycorrhiza 31, 699–711 (2021). https://doi.org/10.1007/s00572-021-01049-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00572-021-01049-y

Keywords

Navigation