Skip to main content

Advertisement

Log in

Exploring arbuscular mycorrhizal symbiosis in wetland plants with a focus on human impacts

  • Published:
Symbiosis Aims and scope Submit manuscript

Abstract

Presence and functional roles of arbuscular mycorrhizal (AM) fungi in wetland environment have gained a global importance in recent past. Wetlands build a low-oxygen atmosphere, forming a completely different ecological environment for AM fungi, known more to occur in terrestrial environment. Nevertheless, as many 101 of AM fungi species, belonging to 19 genera and 9 families have been observed in the rhizosphere of wetland plants. In order to obtain oxygen, AM fungi expand the aeration system of wetland plants, store oxygen through their own vesicles, or change the structure of AM to survive. Human activities negatively affect the wetland environment, thus, reducing the population of AM fungi, while certain AM fungi species still improved the survival and development of wetland plants. AM fungi regulate different physiological activities of wetland plants in response to waterlogging stress, including an enhancement of antioxidant defense system, increased proline accumulation, improved plant growth and root morphology, responses of nutrients and aquaporins, and suppression in ethanol accumulation. The current review briefly summarized different species of wetland plants forming AM structures, the population of AM fungi inhabiting the rhizosphere of wetland plant, AM fungi-colonization of wetland plants, and the effect of AM fungi on physiological functions of wetland plants to neutralize the negative impact of waterlogging in addition to outlook of researchable issues. This review also highlighted human impacts on AM fungi of wetland plants and the impact of AM fungi on wetland environments and wetland plants.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  • Asiimwe T, Krause K, Schlunk I, Kothe E (2012) Modulation of ethanol stress tolerance by aldehyde dehydrogenase in the mycorrhizal fungus Tricholoma vaccinum. Mycorrhiza 22:471–484

    Article  CAS  PubMed  Google Scholar 

  • Azmat R, Moin S (2019) The remediation of drought stress under VAM inoculation through proline chemical transformation action. J Photochemi Photobiol B: Biol 193:155–161

    Article  CAS  Google Scholar 

  • Ban YH, Jiang YH, Li M, Zhang XL, Zhang SY, Wu Y, Xu ZY (2017) Homogenous stands of a wetland grass living in heavy metal polluted wetlands harbor diverse consortia of arbuscular mycorrhizal fungi. Chemosphere 181:699–709

    Article  CAS  PubMed  Google Scholar 

  • Bao XZ, Wang YT, Olsson PA (2019) Arbuscular mycorrhiza under water-carbon-phosphorus exchange between rice and arbuscular mycorrhizal fungi under different flooding regimes. Soil Biol Biochem 129:169–177

    Article  CAS  Google Scholar 

  • Beck-Nielsen D, Madsen TV (2001) Occurrence of vesicular arbuscular mycorrhiza in aquatic macrophytes from lakes and streams. Aquatic Bot 71:141–148

    Article  Google Scholar 

  • Bohrer KE, Friese CF, Amon JP (2004) Seasonal dynamics of arbuscular mycorrhizal fungi in differing wetland habitats. Mycorrhiza 14:329–337

    Article  PubMed  Google Scholar 

  • Bonfante P (2018) The future has roots in the past: the ideas and scientists that shaped mycorrhizal research. New Phytol 220:982–995

    Article  PubMed  Google Scholar 

  • Calheiros CSC, Pereira SIA, Franco AR, Castro PML (2019) Diverse arbuscular mycorrhizal fungi (AMF) communities colonize plants inhabiting a constructed wetland for wastewater treatment. Water 11:1535

    Article  CAS  Google Scholar 

  • Calvo-Polanco M, Molina S, Zamarreno AM, Garcia-Mina JM, Aroca R (2014) The symbiosis with the arbuscular mycorrhizal fungus Rhizophagus irregularis drives root water transport in flooded tomato plants. Plant Cell Physiol 55:1017–1029

    Article  CAS  PubMed  Google Scholar 

  • Cheng XF, Wu HH, Zou YN, Wu QS, Kuča K (2021) Mycorrhizal response strategies of trifoliate orange under well-watered, salt stress, and waterlogging stress by regulating leaf aquaporin expression. Plant Physiol Biochem 162:27–35

    Article  CAS  PubMed  Google Scholar 

  • Fester T (2012) Arbuscular mycorrhizal fungi in a wetland constructed for benzene-, methyl tert-butyl ether –and ammonia-contaminated ground water remediation. Microbial Biotechnol 6:80–84

    Article  CAS  Google Scholar 

  • Fraser LH, Feinstein LM (2005) Effects of mycorrhizal inoculant, N:P supply ratio, and water depth on the growth and biomass allocation of three wetland plant species. Can J Bot 83:1117–1125

    Article  Google Scholar 

  • Fusconi A, Mucciarelli M (2018) How important is arbuscular mycorrhizal colonization in wetland and aquatic habitats? Environ Exp Bot 155:128–141

    Article  Google Scholar 

  • Garcia I, Mendoza R (2014) Lotus tenuis seedlings subjected to drought or waterlogging in a saline sodic soil. Environ Exp Bot 98:47–55

    Article  CAS  Google Scholar 

  • He JD, Zou YN, Wu QS, Kuča K (2020) Mycorrhizas enhance drought tolerance of trifoliate orange by enhancing activities and gene expression of antioxidant enzymes. Sci Hortic 262:108745

    Article  CAS  Google Scholar 

  • Hu B, Hu SS, Chen ZB, Vymazal J (2020a) Employ of arbuscular mycorrhizal fungi for pharmaceuticals ibuprofen and diclofenac removal in mesocosm-scale constructed wetlands. J Hazard Mat 409:124524

  • Hu SS, Chen ZB, Vosatka M, Vymazal J (2020b) Arbuscular mycorrhizal fungi colonization and physiological functions toward wetland plants under different water regimes. Sci Total Environ 716:137040

    Article  CAS  PubMed  Google Scholar 

  • Hu SS, Hu B, Chen ZB, Vosatka M, Vymazal J (2020c) Antioxidant response in arbuscular mycorrhizal fungi inoculated wetland plant under Cr stress. Environ Res 191:110203

    Article  CAS  PubMed  Google Scholar 

  • Hu TT, Kang SZ (2005) A review of responses of plants to waterlogging stress. J Fujian Agric For Univ (Nat Sci Edit) 34:18–24

    CAS  Google Scholar 

  • Hussain S, Rao MJ, Anjum MA, Ejaz S, Zakir I, Ali MA, Ahmad N, Ahmad S (2019) Oxidative stress and antioxidant defense in plants under drought conditions. In: Hasanuzzaman M, Hakeem K, Nahar K, Alharby H (eds) Plant abiotic stress tolerance. Springer, pp 207–219

  • Khan AG (1993) Occurrence and importance of mycorrhizae in aquatic trees of New South Wales, Australia. Mycorrhiza 3:31–38

    Article  Google Scholar 

  • Khan AG (2004) Mycotrophy and its significance in wetland ecology and wetland management. In: Wong MH (ed) Wetlands ecosystems in Asia. Elsevier, pp 95–114

  • Kong F, Feng G, Li XL, Shi YX (2004) Effect of heavy metal pollution on arbuscular mycorrhizal fungi sporulation. Chin J Appl Environ Biol 10:218–222

    CAS  Google Scholar 

  • Lenoir I, Fontaine J, Sahraoui ALH (2016) Arbuscular mycorrhizal fungal responses to abiotic stress: a review. Phytochemistry 123:4–15

    Article  CAS  PubMed  Google Scholar 

  • Leyval C, Tumau K, Haselwandter K (1997) Effect of heavy metal pollution on mycorrhizal colonization and function: physiological, ecological and applied aspects. Mycorrhiza 7:139–153

    Article  CAS  Google Scholar 

  • Li H (2017) Effects of nitrogen and phosphorus on AM formation and its function in wetland. Master's thesis. Beijing University of Chemical Tehnology, Beijing, pp 1–78

  • Lichvar RW (2014) The National Wetland Plant List: 2014 wetland ratings. Phytoneuron 2014-41:1–42

    Google Scholar 

  • Liu JY, Cao M, Tang X, Yang XH, Huang XZ, Qin J (2016) Ecological reconstruction function and potential application of mulberry and mycorrhizal mulberry in the three gorges Reservior area. Acta Ecol Sin 36:22–29

    CAS  Google Scholar 

  • Maricle BR, Lee RW (2002) Aerencyma development and oxygen transport in the estuarine cordgrasses Spartina alterni flora and S. anglica. Aquat Bot 74:109–120

  • Mejstrik V (1984) Ecology of vesicular arbuscular mycorrhizae of the Schoenetum nigricantis bohemicum community in the Grabanovsky swamps reserve. Sov J Ecol 15:18–23

    Google Scholar 

  • Miller SP (2000) Arbuscular mycorrhizal colonization of semiaquatic grasses along a wide hydrologic gradient. New Phytol 145:145–155

    Article  Google Scholar 

  • Muthukumar T, Udaiyan K, Shanmughavel P (2004) Mycorrhiza in sedges - an overview. Mycorrhiza 14:65–77

    Article  CAS  PubMed  Google Scholar 

  • Neto D, Carvalho LM, Cruz C, Martins-Loução MA (2006) How do mycorrhizas affect C and N relationships in flooded Aster tripolium plants? Plant Soil 279:51–63

    Article  CAS  Google Scholar 

  • Osundina MA (1998) Nodulation and growth of mycorrhizal Casuarina equisetifolia J.R. and G. first in response to flooding. Biol Fertil Soils 26:95–99

    Article  Google Scholar 

  • Peng L, Liu ZF, Xiao WX, Yang LF, Deng SH (2012) The potential of arbuscular mycorrhizal fungi (AMF) to improve decontamination capability and operational stability of constructed wetland. J Agro Environ Sci 31:1869–1878

    CAS  Google Scholar 

  • Raiz M, Kamran M, Fang Y, Wang Q, Cao H, Yang G, Deng L, Wang Y, Zhou Y, Anastopoulos I, Wang XR (2021) Arbuscular mycorrhizal fungi-induced mitigation of heavy metal phytotoxicity in metal contaminated soils: a critical review. J Hazard Mater 402:123919

    Article  CAS  Google Scholar 

  • Ramírez-Viga TK, Aguilar R, Castillo-Argüero S, Chiappa-Carrara X, Guadarram P, Ramos-Zapata J (2018) Wetland plant species improve performance when inoculated with arbuscular mycorrhizal fungi: a meta-analysis of experimental pot studies. Mycorrhiza 28:1–17

    Article  Google Scholar 

  • Rutto KL, Mizutani F, Kadoya K (2002) Effect of root-zone flooding on mycorrhizal and non-mycorrhizal peach (Prunus persica Batsch) seedlings. Sci Hortic 94:285–295

    Article  Google Scholar 

  • Sengupta A, Chaudhuri S (2002) Arbuscular mycorrhizal relations of mangrove plant community at the Ganges river estuary in India. Mycorrhiza 12:169–174

    Article  PubMed  Google Scholar 

  • Sharma MP, Bhatia NP, Adholeya A (2001) Mycorrhizal dependency and growth responses of Acacia nilotica and Albizzia lebbeck to inoculation by indigenous AM fungi as influenced by available soil P levels in a semi-arid Alfisol wasteland. New For 21:89–104

  • Sidhoum W, Bahi K, Fortas Z (2020) The effect of salinity gradient and heavy metal pollution on arbuscular mycorrhizal fungal community structure in some Algerian wetlands. Acta Bot Croatica 79:3–14

    Article  CAS  Google Scholar 

  • Smith FA, Smith SE (2011) What is the significance of the arbuscular mycorrhizal colonisation of many economically important crop plants? Plant Soil 348:63–79

    Article  CAS  Google Scholar 

  • Sondergaard M, Laegaard S (1977) Vesicular arbuscular mycorrhiza in some aquatic plants. Nature 268:232–233

    Article  Google Scholar 

  • Sun ZG, Liu JS, Li B (2006) The actuality, problems and sustainable utilization countermeasures of wetland resources in China. J Arid Land Resources Environ 20(2):83–88

    Google Scholar 

  • Tuheteru FD, Wu QS (2017) Arbuscular mycorrhizal fungi and toelrance of waterlogging stress in plants. In: Wu QS (ed) Arbuscular mycorrhizas and stress tolerance of plants. Springer Nature Singapore Pte Ltd., pp 43–66

  • Twanabasu BR, Smith CM, Stevens KJ, Venables BJ, Sears WC (2013) Triclosan inhibits arbuscular mycorrhizal colonization in three wetland plants. Sci Total Environ 447:450–457

    Article  CAS  PubMed  Google Scholar 

  • Tuo XQ, Li S, Wu QS, Zou YN (2015) Alleviation of waterlogged stress in peach seedlings inoculated with Funneliformis mosseae: changes in chlorophyll and proline metabolism. Sci Hortic 197:130–134

    Article  CAS  Google Scholar 

  • Wang K, Zhao ZW (2006a) Arbuscular mycorrhizal status of wetland plants collected from Yunnan. Acta Bot Yunnanica 28:349–351

    Google Scholar 

  • Wang K, Zhao ZW (2006b) Occurrence of arbuscular mycorrhizas and dark septate endophytes in hydrophytes from lakes and streams in Southwest China. Int Rev Hydrobiol 91:29–37

    Article  CAS  Google Scholar 

  • Wang SG, Diao XJ, Feng ZZ (2008) Arbuscular mycorrhizal status of wetland plants. Acta Ecol Sin 28:5075–5083

    Google Scholar 

  • Wang Y, Huang Y, Qiu Q, Xin G, Yang Z, Shi S (2011) Flooding greatly affects the diversity of arbuscular mycorrhizal fungi communities in the roots of wetland plants. PLoS One 6:e24512

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wezowics K, Turnau K, Anielska T, Zhebrak I, Goluszka K, Blaszkowski J, Rozpadek P (2015) Metal toxicity differently affects the Iris pseudacorus-arbuscular mycorrhiza fungi symbiosis in terrestrial and semi-aquatic habitats. Environ Sci Poll Res 22:19400–19407

    Article  CAS  Google Scholar 

  • Wirsel SGR (2004) Homogenous stands of a wetland grass harbour diverse consortia of arbuscular mycorrhizal fungi. FEMS Microbiol Ecol 48:129–138

    Article  CAS  PubMed  Google Scholar 

  • Wu HH, Zou YN, Rahman MM, Ni QD, Wu QS (2017) Mycorrhizas alter sucrose and proline metabolism in trifoliate orange exposed to drought stress. Sci Rep 7:42389

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wu QS, Srivastava AK, Zou YN (2013a) AMF-induced tolerance to drought stress in citrus: a review. Sci Hortic 164:77–87

    Article  CAS  Google Scholar 

  • Wu QS, Zou YN, Huang YM (2013b) The arbuscular mycorrhizal fungus Diversispora spurca ameliorates effects of waterlogging on growth, root system architecture and antioxidant enzyme activities of citrus seedlings. Fungal Ecol 6:37–43

    Article  Google Scholar 

  • Wu S, Sui X, Zhang T, Chen YT, Zhu DG, Cui FX, Yan LB (2019a) Research on the progress of AMF in wetland. Territory Nat Res Study 6:80–84

    Google Scholar 

  • Wu QS, He JD, Srivastava AK, Zou YN, Kuca K (2019b) Mycorrhizas enhance drought tolerance of citrus by altering root fatty acid compositions and their saturation levels. Tree Physiol 39:1149–1158

    Article  CAS  PubMed  Google Scholar 

  • Xie H, Yang L, Li ZG (2011) The roles of proline in the formation of plant tolerance to abiotic stress. Biotechnol Bull 60(2):23–27

    Google Scholar 

  • Xie MM, Wang Y, Li QS, Kuča K, Wu QS (2020a) A friendly-environmental strategy: application of arbuscular mycorrhizal fungi to ornamental plants for plant growth and garden landscape. Not Bot Horti Agrobo 48(3):1100–1115

    Article  CAS  Google Scholar 

  • Xie MM, Zou YN, Wu QS, Zhang ZZ, Kuča K (2020b) Single or dual inoculation of arbuscular mycorrhizal fungi and rhizobia regulates plant growth and nitrogen acquisition in white clover. Plant Soil Environ 66:287–294

    Article  CAS  Google Scholar 

  • Xu Z, Ban Y, Jiang Y, Zhang X, Liu X (2016) Arbuscular mycorrhizal fungi in wetland habitats and their application in constructed wetland: a review. Pedosphere 26:592–617

    Article  Google Scholar 

  • Xu Z, Wu Y, Jiang Y, Zhang X, Li J, Ban Y (2018) Arbuscular mycorrhizal fungi in two vertical-flow wetlands constructed for heavy metal-contaminated wastewater bioremediation. Environ Sci Poll Res 25:12830–12840

    Article  CAS  Google Scholar 

  • Yan C, Zhuang T, Bai J, Wen X, Lu Q, Zhang L (2020) Assessment of as, cd, Zn, Cu and Pb pollution and toxicity in river wetland sediments and artificial wetland soils affected by urbanization in a Chinese delta. Wetlands 40:2799–2809

  • Yan JZ, Wu FS, Feng HY (2008) Review on the relationship between wetland plants and arbuscular mycorrhizal fungi (AMF). Acta Bot Boreal-Occident Sin 28(4):836–842

    CAS  Google Scholar 

  • Yang HS, Koide RT, Zhang Q (2016a) Short-term waterlogging increases arbuscular mycorrhizal fungal species richness and shifts community composition. Plant Soil 404:373–384

    Article  CAS  Google Scholar 

  • Yang Y, Liang Y, Han X, Chiu TY, Ghosh A, Chen H, Tang M (2016b) The roles of arbuscular mycorrhizal fungi (AMF) in phytoremediation and tree-herb interactions in Pb contaminated soil. Sci Rep 6:20469

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang YC, Xie MM, Feng HD, Zhou M, Zhang ZZ, Liu CY, Wu QS (2018) Common mycelium networks with Paraglomus occultum induce better plant growth and signal substance changes between trifoliate orange seedlings. Acta Sci Pol - Hortorum Cultus 17(6):95–104

    Article  Google Scholar 

  • Zhang YC, Zou YN, Liu LP, Wu QS (2019) Common mycorrhizal networks activate salicylic acid defense responses of trifoliate orange (Poncirus trifoliata). J Integrat Plant Biol 61(10):1099–1111

    Article  CAS  Google Scholar 

  • Zheng FL, Liang SM, Chu XN, Yang YL, Wu QS (2020) Mycorrhizal fungi enhance flooding tolerance of peach through inducing proline accumulation and improving root architecture. Plant Soil Environ 66:624–631

    Article  CAS  Google Scholar 

  • Zou YN, Srivastava AK, Wu QS, Huang YM (2014) Increasing tolerance of trifoliate orange (Poncirus trifoliata) seedlings to waterlogging after inoculation with arbuscular mycorrhizal fungi. J Anim Plant Sci 24:1415–1420

    Google Scholar 

  • Zou YN, Wu QS, Huang YM, Ni QD, He XH (2013) Mycorrhizal-mediated lower proline accumulation in Poncirus trifoliata under water deficit derives from the integration of inhibition of proline synthesis with increase of proline degradation. PLoS One 8(11):e80568

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Zou YN, Wu QS, Kuča K (2020) Unravelling the role of arbuscular mycorrhizal fungi in mitigating the oxidative burst of plants under drought stress. Plant Biol. https://doi.org/10.1111/plb.13161

Download references

Acknowledgements

This study was supported by the Open Fund of Engineering Research Center of Ecology and Agricultural Use of Wetland, Ministry of Education (KFT202005) and the Plan in Scientific and Technological Innovation Team of Outstanding Young Scientists, Hubei Provincial Department of Education (T201604). This work was also supported by the UHK project VT2019-2021.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qiang-Sheng Wu.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Huang, GM., Srivastava, A.K., Zou, YN. et al. Exploring arbuscular mycorrhizal symbiosis in wetland plants with a focus on human impacts. Symbiosis 84, 311–320 (2021). https://doi.org/10.1007/s13199-021-00770-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13199-021-00770-8

Keywords

Navigation