Skip to main content

Advertisement

Log in

Are fungi from adult orchid roots the best symbionts at germination? A case study

  • Short Note
  • Published:
Mycorrhiza Aims and scope Submit manuscript

Abstract

We studied mycobionts from advanced seedlings and adult mycorrhizal roots of the terrestrial orchid Arundina graminifolia. Fungi were isolated, identified by ITS sequencing, and tested for their impact on seed germination, protocorm formation, and development of advanced seedlings (emergence of first leaf) in vitro. Among the six fungal species isolated, four were not standard orchid mycorrhizal fungi (Fusarium solani, Cylindrocarpon sp., Acremonium sp., and Phlebiopsis flavidoalba) and did not support germination beyond imbibition and greening of the seeds during a span of 35 days. Over the same time, one Tulasnella species isolated from adult mycorrhiza allowed protocorm formation but not further development. However, another Tulasnella species isolated from advanced seedlings facilitated development to the advanced seedling stage. Our results support (i) the inability of occasional orchid root colonizers to support late seed germination, and (ii) the growing literature showing that fungal associates can change over orchid development. Functionally, we show that mycorrhizal taxa isolated from advanced seedlings can be more efficient than those from adults in supporting germination in some species, leading to recommendations for ex situ orchid conservation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

References

  • Arditti J (1967) Factors affecting the germination of orchid seeds. Bot Rev 33:1–97

    Google Scholar 

  • Arditti J, Ghani AKA (2000) Numerical and physical properties of orchid seeds and their biological implications. New Phytol 145:367–421

    Google Scholar 

  • Bayman P, Espinosa ATM, Aponte CMS, Guevara NCH, Ruiz NLV (2016) Age-dependent mycorrhizal specificity in an invasive orchid, Oeceoclades maculata. Am J Bot 103:1880–1889

    PubMed  Google Scholar 

  • Bidartondo MI, Read DJ (2008) Fungal specificity bottlenecks during orchid germination and development. Mol Ecol 17:3707–3716

    PubMed  Google Scholar 

  • Chen SC, Liu ZJ, Zhu GH et al (2009) Orchidaceae. In: Wu ZY, Raven PH, Hong DY (eds) Flora of China, Science Press, vol 25. Beijing, China, pp 314–315

    Google Scholar 

  • Dearnaley JDW, Martos F, Selosse MA (2012) Orchid mycorrhizas: molecular ecology, physiology, evolution and conservation aspects. In: Hock B (ed) The Mycota, Springer, vol 9. Berlin, Germany, pp 207–230

    Google Scholar 

  • Dearnaley JDW, Perotto S, Selosse MA (2016) Structure and development of orchid mycorrhizas. In: Martin F (ed) Molecular mycorrhizal symbiosis. Wiley-Blackwell, Hoboken, pp 63–86

    Google Scholar 

  • Gao JY, Liu Q, Yu DL (2014) Orchids in Xishuangbanna: diversity and conservation. China Forestry Publishing House, Beijing (in Chinese)

    Google Scholar 

  • Guo SX, Fan L, Cao WQ, Xu JT, Xiao PG (1997) Mycena anoectochila sp. nov. isolated from mycorrhizal roots of Anoectochilus roxburghii from Xishuangbanna, China. Mycologia 89:952–954

    Google Scholar 

  • Hori C, Ishida T, Igarashi K, Samejima M, Suzuki H, Master E, Ferreira P, Ruiz-Dueñas FJ, Held B, Canessa P, Larrondo LF, Schmoll M, Druzhinina IS, Kubicek CP, Gaskell JA, Kersten P, St. John F, Glasner J, Sabat G, Splinter BonDurant S, Syed K, Yadav J, Mgbeahuruike AC, Kovalchuk A, Asiegbu FO, Lackner G, Hoffmeister D, Rencoret J, Gutiérrez A, Sun H, Lindquist E, Barry K, Riley R, Grigoriev IV, Henrissat B, Kües U, Berka RM, Martínez AT, Covert SF, Blanchette RA, Cullen D (2014) Analysis of the Phlebiopsis gigantea genome, transcriptome and secretome provides insight into its pioneer colonization strategies of wood. PLoS Genet 10:e1004759

    PubMed  PubMed Central  Google Scholar 

  • Huang H, Zi XM, Lin H, Gao JY (2018) Host-specificity of symbiotic mycorrhizal fungi for enhancing seed germination, protocorm formation and seedling development of over-collected medicinal orchid, Dendrobium devonianum. J Microbiol 56:42–48

    PubMed  Google Scholar 

  • Jacquemyn H, Brys R, Vandepitte K, Honnay O, Roldán RI, Wiegand T (2007) A spatially explicit analysis of seedling recruitment in the terrestrial orchid Orchis purpurea. New Phytol 176:448–459

    PubMed  Google Scholar 

  • Jacquemyn H, Brys R, Cammue BPA, Honnay O, Lievens B (2011) Mycorrhizal associations and reproductive isolation in three closely related Orchis species. Ann Bot 107:347–356

    CAS  PubMed  Google Scholar 

  • Linde CC, Phillips RD, Crisp MD, Peakall R (2014) Congruent species delineation of Tulasnella using multiple loci and methods. New Phytol 201:6–12

    PubMed  Google Scholar 

  • Long JRD, Swarts ND, Dixon KW, Egerton-Warburton LM (2013) Mycorrhizal preference promotes habitat invasion by a native Australian orchid: Microtis media. Ann Bot 111:409–418

    PubMed  Google Scholar 

  • Massey EE, Zettler LW (2007) An expanded role for in vitro symbiotic seed germination as a conservation tool: two case studies in North America (Platanthera leucophaea and Epidendrum nocturnum). Lankesteriana 7:303–308

    Google Scholar 

  • McCormick MK, Whigham DF, O’Neill J (2004) Mycorrhizal diversity in photosynthetic terrestrial orchids. New Phytol 163:425–438

    Google Scholar 

  • Murashige T, Skoog F (1962) A revised medium for rapid growth and bioassays with tobacco tissue cultures. Physiol Plantarum 15:473–497

    CAS  Google Scholar 

  • Nguyen LT, Schmidt HA, Von Haeseler A, Minh BQ (2015) Iq-tree: a fast and effective stochastic algorithm for estimating maximum-likelihood phylogenies. Mol Biol Evol 32:268–274

    CAS  Google Scholar 

  • Okonechnikov K, Golosova O, Fursov M (2012) Unipro ugene: a unified bioinformatics toolkit. Bioinformatics 28:1166–1167

    CAS  PubMed  Google Scholar 

  • Phillips JM, Hayman DS (1970) Improved procedures for clearing roots and staining parasitic and vesicular arbuscular mycorrhizal fungi for rapid assessment of infection. Tran Br Mycol Soc 55:158–160

    Google Scholar 

  • Phillips RD, Barrett MD, Dixon KW, Hopper SD (2011) Do mycorrhizal symbioses cause rarity in orchids? J Ecol 99:858–869

    Google Scholar 

  • Prakash PY, Bhargava K (2016) A modified micro chamber agar spot slide culture technique for microscopic examination of filamentous fungi. J Microbiol Methods 123:126–129

    PubMed  Google Scholar 

  • Rafter M, Yokoya K, Schofield EJ, Zettler LW, Sarasan V (2016) Non-specific symbiotic germination of Cynorkis purpurea (Thouars) Kraezl., a habitat-specific terrestrial orchid from the central highlands of Madagascar. Mycorrhiza 26:541–552

    CAS  PubMed  Google Scholar 

  • Rasmussen HN, Dixon KW, Jersáková J, Těšitelová T (2015) Germination and seedling establishment in orchids: a complex of requirements. Ann Bot 116:391–402

    CAS  PubMed  PubMed Central  Google Scholar 

  • Rodriguez RJ, White JF Jr, Arnold AE, Redman RS (2009) Fungal endophytes: diversity and functional roles. New Phytol 182:314–330

    CAS  PubMed  Google Scholar 

  • Salman R, Prendergast G, Roberts P (2002) Germination of Dactylorhiza fuchsii seeds using fungi from nonorchid sources. In: Kindlmann P, Willems JH, Whigham DF (eds) Underlying mechanisms of trends and fluctuations in terrestrial orchid populations. Backhuys, The Hague, pp 133–153

    Google Scholar 

  • Selosse MA, Martos F (2014) Do chlorophyllous orchids heterotrophically use mycorrhizal fungal carbon? Trends Plant Sci 19:683–685

    CAS  PubMed  Google Scholar 

  • Selosse MA, Weiβ M, Jany JL, Tillier A (2002) Communities and populations of sebacinoid basidiomycetes associated with the achlorophyllous orchid Neottia nidus-avis (L.) L.C.M. Rich. and neighbouring tree ectomycorrhizae. Mol Ecol 11:1831–1844

    CAS  PubMed  Google Scholar 

  • Selosse MA, Martos F, Perry BA, Padamsee M, Roy M, Pailler T (2010) Saprotrophic fungal symbionts in tropical achlorophyllous orchids: finding treasures among the ‘molecular scraps’? Plant Signal Behav 5:1–5

    Google Scholar 

  • Selosse MA, Maunoury LS, Martos F (2018) Time to re-think fungal ecological niches? New Phytol 217:968–972

    PubMed  Google Scholar 

  • Sheng CL, Lee YI, Gao JY (2012) Ex situ symbiotic seed germination, isolation and identification of effective symbiotic fungus in Cymbidium mannii (Orchidaceae). Chin J Plant Ecol 36:859–869 (in Chinese)

    Google Scholar 

  • Smith SE, Read DJ (2008) Mycorrhizal symbiosis, 3rd edn. Academic Press, San Diego

    Google Scholar 

  • Stewart SL, Zettler LW (2002) Symbiotic germination of three semi-aquatic rein orchids (Habenaria repens, H. quinqueseta, H. macroceratitis) from Florida. Aquat Bot 72:25–35

    Google Scholar 

  • Těšitelová T, Těšitel J, Jersáková J, Říhová G, Selosse MA (2012) Symbiotic germination capability of four Epipactis species (Orchidaceae) is broader than expected from adult ecology. Am J Bot 99:1020–1032

    PubMed  Google Scholar 

  • Vasiliauskas R, Menkis A, Finlay RD, Stenlid J (2007) Wood-decay fungi in fine living roots of conifer seedlings. New Phytol 174:441–446

    CAS  PubMed  Google Scholar 

  • Vujanovic V, St-Arnaud M, Barabé D, Thibeault G (2000) Viability testing of orchid seed and the promotion of colouration and germination. Ann Bot 86:79–86

    Google Scholar 

  • Wang H, Fang HY, Wang YQ, Duan LS, Guo SX (2011) In situ seed baiting techniques in Dendrobium officinale Kimura & Migo and Dendrobium nobile Lindl.: the endangered Chinese endemic Dendrobium (Orchidaceae). World J Microb Biotechnol 27:2051–2059

    Google Scholar 

  • Weiβ M, Waller F, Zuccaro A, Selosse MA (2016) Sebacinales—one thousand and one interactions with land plants. New Phytol 211:20–40

    Google Scholar 

  • White TJ, Bruns T, Lee S, Taylor JW (1990) Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. In: Innis MA, Gelfand DH, Sninsky JJ, White TJ (eds) PCR protocols: a guide to methods and applications. Academic, New York, pp 315–322

    Google Scholar 

  • Xu JT, Mu C (1990) The relation between growth of Gastrodia elata protocorms and fungi. Acta Bot Sin 32:26–31

    Google Scholar 

  • Yokoya K, Zettler LW, Kendon JP, Bidartondo MI, Stice AL, Skarha S, Corey LL, Knight AC, Sarasan V (2015) Preliminary findings on identification of mycorrhizal fungi from diverse orchids in the Central Highlands of Madagascar. Mycorrhiza 25:611–625

    PubMed  Google Scholar 

  • Zelmer CD, Cuthbertson L, Currah RS (1996) Fungi associated with terrestrial orchid mycorrhizas, seeds and protocorms. Mycoscience 37:439–448

    Google Scholar 

  • Zettler LW, Corey LL (2018) Orchid mycorrhizal fungi: isolation and identification techniques. In: Lee YI, Yeung ECT (eds) Orchid propagation: from laboratories to greenhouses - methods and protocols. Springer, Berlin, pp 27–59

    Google Scholar 

  • Zettler LW, Hofer CJ (1998) Propagation of the little club-spur orchid (Platanthera clavellata) by symbiotic seed germination and its ecological implications. Environ Exp Bot 39:189–195

    Google Scholar 

  • Zhang LC, Chen J, Lv YL, Gao C, Guo S (2012) Mycena sp. a mycorrhizal fungus of the orchid Dendrobium officinale. Mycol Prog 11:395–401

    Google Scholar 

  • Zhou X, Gao JY (2016) Highly compatible Epa-01 strain promotes seed germination and protocorm development of Papilionanthe teres (Orchidaceae). Plant Cell Tissue Org 125:479–493

    CAS  Google Scholar 

  • Zi XM, Sheng CL, Goodale UM, Shao SC, Gao JY (2014) In situ seed baiting to isolate germination-enhancing fungi for an epiphytic orchid, Dendrobium aphyllum (Orchidaceae). Mycorrhiza 24:487–499

    CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We are very grateful to Shicheng Shao, Xuli Fan, and Qiang Liu for field and laboratory assistance, David March for language corrections, and to three referees and Prof. J. Colpaert for helpful comments on earlier versions of this manuscript.

Funding

This work was supported by the National Key R & D Program of China (2017YFC0505204) and the National Natural Science Foundation of China (grant nos. U1702235 and 31470450).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jiang-Yun Gao.

Ethics declarations

Disclaimer

The authors alone are responsible for the content and functionality of these materials.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Two tables (Appendix Table S1 and S2) and two figures (Appendix Fig. S1 and S2) are available online. Queries (other than absence of the material) should be directed to the corresponding author.

Appendix Figure S1

Morphology and microscopic characteristics of six fungal species in PDA medium. A & a for Fusarium solani; B & b for Acremonium sp.1; C & c for Phlebiopsis flavidoalba; D & d for Tulasnella sp.1; E & e for Tulasnella sp.2; F & f for Cylindrocarpon sp.1, respectively. Black and white arrows indicate conidia and monilioid cells. (PNG 1145 kb)

High resolution image (TIF 9213 kb)

Appendix Figure S2

Morphology of an Arundina graminifolia seed at stage 1, showing the greening of enlarging embryos. (PNG 927 kb)

High resolution image (TIF 1246 kb)

Appendix Table S1

(DOCX 17 kb)

Appendix Table S2

(DOCX 18.9 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Meng, YY., Zhang, WL., Selosse, MA. et al. Are fungi from adult orchid roots the best symbionts at germination? A case study. Mycorrhiza 29, 541–547 (2019). https://doi.org/10.1007/s00572-019-00907-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00572-019-00907-0

Keywords

Navigation