Skip to main content
Log in

The large (134.9 kb) mitochondrial genome of the glomeromycete Funneliformis mosseae

  • Original Article
  • Published:
Mycorrhiza Aims and scope Submit manuscript

Abstract

Funneliformis mosseae is among the most ecologically and economically important glomeromycete species and occurs both in natural and disturbed areas in a wide range of habitats and climates. In this study, we report the sequencing of the complete mitochondrial (mt) genome of F. mosseae isolate FL299 using 454 pyrosequencing and Illumina HiSeq technologies. This mt genome is a full-length circular chromosome of 134,925 bp, placing it among the largest mitochondrial DNAs (mtDNAs) in the fungal kingdom. A comparative analysis with publically available arbuscular mycorrhizal fungal mtDNAs revealed that the mtDNA of F. mosseae FL299 contained a very large number of insertions contributing to its expansion. The gene synteny was completely reshuffled compared to previously published glomeromycotan mtDNAs and several genes were oriented in an anti-sense direction. Furthermore, the presence of different types of introns and insertions in rnl (14 introns) made this gene very distinctive in Glomeromycota. The presence of alternative genetic codes in both initiation (GUG) and termination (UGA) codons was another new feature in this mtDNA compared to previously published glomeromycotan mt genomes. The phylogenetic analysis inferred from the analysis of 14 protein mt genes confirmed the position of the Glomeromycota clade as a sister group of Mortierellomycotina. This mt genome is the largest observed so far in Glomeromycota and the first mt genome within the Funneliformis clade, providing new opportunities to better understand their evolution and to develop molecular markers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Abiodun S (2010) Bioremediation of a crude oil polluted soil with Pleurotus Pulmonarius and Glomus Mosseae using Amaranthus hybridus as a test plant. J Bioremediat Biodegrad 01(03)

  • Aguileta G, de Vienne DM, Ross ON, Hood ME, Giraud T, Petit E, Gabaldon T (2014) High variability of mitochondrial gene order among fungi. Genome Biol Evol 6(2):451–465

    Article  PubMed  PubMed Central  Google Scholar 

  • Badri A, Stefani FOP, Lachance G, Roy-Arcand L, Beaudet D, Vialle A, Hijri M (2016) Molecular diagnostic toolkit for Rhizophagus irregularis isolate DAOM-197198 using quantitative PCR assay targeting the mitochondrial genome Mycorrhiza. Mycorrhiza. doi:10.1007/s00572-016-0708-1

  • Beaudet D, Nadimi M, Iffis B, Hijri M (2013a) Rapid mitochondrial genome evolution through invasion of mobile elements in two closely related species of arbuscular mycorrhizal fungi. PLoS One 8(4), e60768

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Beaudet D, Terrat Y, Halary S, de la Providencia IE, Hijri M (2013b) Mitochondrial genome rearrangements in Glomus species triggered by homologous recombination between distinct mtDNA haplotypes. Genome Biol Evol 5(9):1628–1643

    PubMed  PubMed Central  Google Scholar 

  • Beaudet D, de la Providencia IE, Labridy M, Roy-Bolduc A, Daubois L, Hijri M (2015) Intraisolate mitochondrial genetic polymorphism and gene variants coexpression in arbuscular mycorrhizal fungi. Genome Biol Evol 7(1):218–227

  • Bentivenga SP, Kumar TK, Kumar L, Roberson RW, McLaughlin DJ (2013) Cellular organization in germ tube tips of Gigaspora and its phylogenetic implications. Mycologia 105(5):1087–1099

    Article  PubMed  Google Scholar 

  • Boon E, Zimmerman E, St-Arnaud M, Hijri M (2013) Allelic differences within and among sister spores of the arbuscular mycorrhizal fungus Glomus etunicatum suggest segregation at sporulation. PLoS One 8(12), e83301

    Article  PubMed  PubMed Central  Google Scholar 

  • Boon E, Halary S, Bapteste E, Hijri M (2015) Studying genome heterogeneity within the arbuscular mycorrhizal fungal cytoplasm. Genome Biol Evol 7(2):505–521

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bullerwell CE, Lang BF (2005) Fungal evolution: the case of the vanishing mitochondrion. Curr Opin Microbiol 8(4):362–369

    Article  CAS  PubMed  Google Scholar 

  • de la Providencia IE, Nadimi M, Beaudet D, Morales GR, Hijri M (2013) Detection of a transient mitochondrial DNA heteroplasmy in the progeny of crossed genetically divergent isolates of arbuscular mycorrhizal fungi. New Phytologist 200(1):211–221

    Article  PubMed  Google Scholar 

  • Edgar RC (2004) MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res 32(5):1792–1797

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Esch H, Hundeshagen B, Schneider-Poetsch H, Bothe H (1994) Demonstration of abscisic acid in spores and hyphae of the arbuscular-mycorrhizal fungus Glomus and in the N2-fixing cyanobacterium Anabaena variabilis. Plant Sci 99:9–16

    Article  CAS  Google Scholar 

  • Ferandon C, Xu J, Barroso G (2013) The 135 kbp mitochondrial genome of Agaricus bisporus is the largest known eukaryotic reservoir of group I introns and plasmid-related sequences. Fungal Genet Biol 55:85–91

    Article  CAS  PubMed  Google Scholar 

  • Formey D, Moles M, Haouy A, Savelli B, Bouchez O, Becard G, Roux C (2012) Comparative analysis of mitochondrial genomes of Rhizophagus irregularis—syn. Glomus irregulare—reveals a polymorphism induced by variability generating elements. New Phytologist 196(4):1217–1227

    Article  CAS  PubMed  Google Scholar 

  • Foury F, Roganti T, Lecrenier N, Purnelle B (1998) The complete sequence of the mitochondrial genome of Saccharomyces cerevisiae. FEBS Lett 440:325–331

    Article  CAS  PubMed  Google Scholar 

  • Guindon S, Dufayard JF, Lefort V, Anisimova M, Hordijk W, Gascuel O (2010) New algorithms and methods to estimate maximum-likelihood phylogenies: assessing the performance of PhyML 3.0. Syst Biol 59(3):307–321

    Article  CAS  PubMed  Google Scholar 

  • Halary S, Daubois L, Terrat Y, Ellenberger S, Wostemeyer J, Hijri M (2013) Mating type gene homologues and putative sex pheromone-sensing pathway in arbuscular mycorrhizal fungi, a presumably asexual plant root symbiont. PLoS One 8(11), e80729

    Article  PubMed  PubMed Central  Google Scholar 

  • Hart MM, Aleklett K, Chagnon PL, Egan C, Ghignone S, Helgason T, Lekberg Y, Opik M, Pickles BJ, Waller L (2015) Navigating the labyrinth: a guide to sequence-based, community ecology of arbuscular mycorrhizal fungi. New phytologist 207(1):235

    Article  PubMed  Google Scholar 

  • Hassan SE, Boon E, St-Arnaud M, Hijri M (2011) Molecular biodiversity of arbuscular mycorrhizal fungi in trace metal-polluted soils. Mol Ecol 20(16):3469–3483

    Article  Google Scholar 

  • Hassan SE, Hijri M, St-Arnaud M (2013) Effect of arbuscular mycorrhizal fungi on trace metal uptake by sunflower plants grown on cadmium contaminated soil. N Biotechnol 30(6):780–787

    Article  CAS  PubMed  Google Scholar 

  • Hibbett DS, Binder M, Bischoff JF, Blackwell M, Cannon PF, Eriksson OE, Huhndorf S, James T, Kirk PM, Lucking R, Thorsten Lumbsch H, Lutzoni F, Matheny PB, McLaughlin DJ, Powell MJ, Redhead S, Schoch CL, Spatafora JW, Stalpers JA, Vilgalys R, Aime MC, Aptroot A, Bauer R, Begerow D, Benny GL, Castlebury LA, Crous PW, Dai YC, Gams W, Geiser DM, Griffith GW, Gueidan C, Hawksworth DL, Hestmark G, Hosaka K, Humber RA, Hyde KD, Ironside JE, Koljalg U, Kurtzman CP, Larsson KH, Lichtwardt R, Longcore J, Miadlikowska J, Miller A, Moncalvo JM, Mozley-Standridge S, Oberwinkler F, Parmasto E, Reeb V, Rogers JD, Roux C, Ryvarden L, Sampaio JP, Schussler A, Sugiyama J, Thorn RG, Tibell L, Untereiner WA, Walker C, Wang Z, Weir A, Weiss M, White MM, Winka K, Yao YJ, Zhang N (2007) A higher-level phylogenetic classification of the Fungi. Mycol Res 111:509–547

    Article  PubMed  Google Scholar 

  • James TY, Kauff F, Schoch CL, Matheny PB, Hofstetter V, Cox CJ, Celio G, Gueidan C, Fraker E, Miadlikowska J, Lumbsch HT, Rauhut A, Reeb V, Arnold AE, Amtoft A, Stajich JE, Hosaka K, Sung GH, Johnson D, O’Rourke B, Crockett M, Binder M, Curtis JM, Slot JC, Wang Z, Wilson AW, Schussler A, Longcore JE, O’Donnell K, Mozley-Standridge S, Porter D, Letcher PM, Powell MJ, Taylor JW, White MM, Griffith GW, Davies DR, Humber RA, Morton JB, Sugiyama J, Rossman AY, Rogers JD, Pfister DH, Hewitt D, Hansen K, Hambleton S, Shoemaker RA, Kohlmeyer J, Volkmann-Kohlmeyer B, Spotts RA, Serdani M, Crous PW, Hughes KW, Matsuura K, Langer E, Langer G, Untereiner WA, Lucking R, Budel B, Geiser DM, Aptroot A, Diederich P, Schmitt I, Schultz M, Yahr R, Hibbett DS, Lutzoni F, McLaughlin DJ, Spatafora JW, Vilgalys R (2006) Reconstructing the early evolution of Fungi using a six-gene phylogeny. Nature 443(7113):818–822

    Article  CAS  PubMed  Google Scholar 

  • Jones DT, Taylor WR, Thornton JM (1992) The rapid generation of mutation data matrices from protein sequences. Comput Appl Biosci 8:275–282

    CAS  PubMed  Google Scholar 

  • Keeling PJ, Slamovits CH (2004) Simplicity and complexity of microsporidian genomes. Eukaryotic Cell 3(6):1363–1369

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kruger M, Stockinger H, Kruger C, Schussler A (2009) DNA-based species level detection of Glomeromycota: one PCR primer set for all arbuscular mycorrhizal fungi. New phytologist 183(1):212–223

    Article  PubMed  Google Scholar 

  • Lang BF, Laforest MJ, Burger G (2007) Mitochondrial introns: a critical view. Trends Genet 23(3):119–125

    Article  CAS  PubMed  Google Scholar 

  • Lee J, Young JP (2009) The mitochondrial genome sequence of the arbuscular mycorrhizal fungus Glomus intraradices isolate 494 and implications for the phylogenetic placement of Glomus. New phytologist 183(1):200–211

    Article  CAS  PubMed  Google Scholar 

  • Lohse M, Drechsel O, Kahlau S, Bock R (2013) OrganellarGenomeDRAW—a suite of tools for generating physical maps of plastid and mitochondrial genomes and visualizing expression data sets. Nucleic Acids Res 41:W575–W581

    Article  PubMed  PubMed Central  Google Scholar 

  • Losada L, Pakala SB, Fedorova ND, Joardar V, Shabalina SA, Hostetler J, Pakala SM, Zafar N, Thomas E, Rodriguez-Carres M, Dean R, Vilgalys R, Nierman WC, Cubeta MA (2014) Mobile elements and mitochondrial genome expansion in the soil fungus and potato pathogen Rhizoctonia solani AG-3. FEMS Microbiol Lett 352(2):165–173

    Article  CAS  PubMed  Google Scholar 

  • Marleau J, Dalpe Y, St-Arnaud M, Hijri M (2011) Spore development and nuclear inheritance in arbuscular mycorrhizal fungi. BMC Evol Biol 11:51

    Article  PubMed  PubMed Central  Google Scholar 

  • Nadimi M, Beaudet D, Forget L, Hijri M, Lang BF (2012) Group I intron-mediated trans-splicing in mitochondria of Gigaspora rosea and a robust phylogenetic affiliation of arbuscular mycorrhizal fungi with Mortierellales. Mol Biol Evol 29(9):2199–2210

    Article  CAS  PubMed  Google Scholar 

  • Nadimi M, Stefani FO, Hijri M (2015) The mitochondrial genome of the glomeromycete Rhizophagus sp. DAOM 213198 reveals an unusual organization consisting of two circular chromosomes. Genome Biol Evol 7(1):96–105

    Article  Google Scholar 

  • Nadimi M, Daubois L, Hijri M (2016) Mitochondrial comparative genomics and phylogenetic signal assessment of mtDNA among arbuscular mycorrhizal fungi. Mol Phylogenet Evol 98:74–83

    Article  CAS  PubMed  Google Scholar 

  • Paquin B, Laforest MJ, Forget L, Roewer I, Wang Z, Longcore J, Lang BL (1997) The fungal mitochondrial genome project: evolution of fungal mitochondrial genomes and their gene expression. Curr Genet 31:380–395

    Article  CAS  PubMed  Google Scholar 

  • Pelin A, Pombert JF, Salvioli A, Bonen L, Bonfante P, Corradi N (2012) The mitochondrial genome of the arbuscular mycorrhizal fungus Gigaspora margarita reveals two unsuspected trans-splicing events of group I introns. New Phytologist 194(3):836–845

    Article  CAS  PubMed  Google Scholar 

  • Peng Y, Leung HC, Yiu SM, Chin FY (2012) IDBA-UD: a de novo assembler for single-cell and metagenomic sequencing data with highly uneven depth. Bioinformatics 28:1420–1428

    Article  CAS  PubMed  Google Scholar 

  • Pramateftaki PV, Kouvelis VN PL, Typas MA (2006) The mitochondrial genome of the wine yeast Hanseniaspora uvarum: a unique genome organization among yeast/fungal counterparts. FEMS Yeast Res 6(1):77–90

    Article  CAS  PubMed  Google Scholar 

  • Ropars J, Toro KS, Noel J, Pelin A, Charron P, Farinelli L, Marton T, Krüger M, Fuchs J, Brachmann A, Corradi N (2016) Evidence for the sexual origin of heterokaryosis in arbuscular mycorrhizal fungi. Nature Microbiology. doi:10.1038/nmicrobiol.2016.33

  • Sanders IR, Croll D (2010) Arbuscular mycorrhiza: the challenge to understand the genetics of the fungal partner. Annu Rev Genet 44:271–292

    Article  CAS  PubMed  Google Scholar 

  • Seif E, Leigh J, Liu Y, Roewer I, Forget L, Lang BF (2005) Comparative mitochondrial genomics in zygomycetes: bacteria-like RNase P RNAs, mobile elements and a close source of the group I ntron invasion in angiosperms. Nucleic Acids Res 33(2):734–744

  • Smith SE, Read DJ (2008) Mycorrhizal symbiosis, 3rd edn. Academic, London.

  • Stockinger H, Kruger M, Schussler A (2010) DNA barcoding of arbuscular mycorrhizal fungi. New Phytologist 187(2):461–474

    Article  CAS  PubMed  Google Scholar 

  • Stockinger H, Peyret-Guzzon M, Koegel S, Bouffaud ML, Redecker D (2014) The largest subunit of RNA polymerase II as a new marker gene to study assemblages of arbuscular mycorrhizal fungi in the field. PLoS One 9(9), e107783

    Article  PubMed  PubMed Central  Google Scholar 

  • Wyss T, Masclaux FG, Rosikiewicz P, Pagni M, Sanders IR (2016) Population genomics reveals that within-fungus polymorphism is common and maintained in populations of the mycorrhizal fungus Rhizophagus irregularis. ISME J (in Press). doi:10.1038/ismej.2016.29

Download references

Acknowledgments

Support for this work came from the Natural Sciences and Engineering Research Council of Canada (NSERC) and Premier Tech, which are greatly acknowledged. We thank Dr. Joe Morton for providing F. mosseae FL299 material, and Drs. Yves Terrat, Denis Beaudet and B. Franz Lang for assistance in bioinformatics. We also thank Dr. David Morse, Dr. Dave Janos, and two anonymous reviewers for the helpful comments and English editing.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohamed Hijri.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(DOCX 598 kb)

ESM 2

(DOCX 166 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nadimi, M., Stefani, F.O.P. & Hijri, M. The large (134.9 kb) mitochondrial genome of the glomeromycete Funneliformis mosseae . Mycorrhiza 26, 747–755 (2016). https://doi.org/10.1007/s00572-016-0710-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00572-016-0710-7

Keywords

Navigation