Skip to main content
Log in

Responses of arbuscular mycorrhizal symbionts to contrasting environments: field evidence along a Tibetan elevation gradient

  • Original Article
  • Published:
Mycorrhiza Aims and scope Submit manuscript

Abstract

Plant adaptation to alpine ecosystems is not fully explained by plant physiological and morphological traits. Arbuscular mycorrhizal (AM) associations may be involved in mediating plant performance in response to environmental differences. Little is known, however, as to whether or not a close relationship exists between plant performance and arbuscular mycorrhizal fungus status across environmental gradients. We conducted a field investigation of the performance of six plant species and their associated AM fungi along higher and lower elevation gradients on Mount Segrila in Tibet. In most of our species, we observed higher shoot and inflorescence biomass production and a lower root-to-shoot ratio in the populations at those sites where the species was dominant (intermediate elevation sites) than in populations sampled at the limits of the distribution. The elevation pattern of root colonization differed with plant species on both gradients, and the extraradical hypha development of most species showed a unimodal pattern as did plant growth. The relationship between plant and fungus traits shows that AM fungus development generally matched host plant performance on the lower elevation gradient but not on the higher elevation gradient. This study provides evidence that plant distribution and productivity were significantly related to root and soil colonization by AM fungi, especially under less physically stressful conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Addy HD, Miller MH, Peterson RL (1997) Infectivity of the propagules associated with extraradical mycelia of two AM fungi following winter freezing. New Phytol 135(4):745–753

    Article  Google Scholar 

  • Aggarwal A, Kadian N, Tanwar A, Yadav A, Gupta KK (2011) Role of arbuscular mycorrhizal fungi (AMF) in global sustainable development. J Appl Nat Sci 3(2):340–351

    Google Scholar 

  • Aristizábal C, Rivera EL, Janos DP (2004) Arbuscular mycorrhizal fungi colonize decomposing leaves of Myrica parvifolia, M pubescens and Paepalanthus sp. Mycorrhiza 14(4):221–228

    Article  PubMed  Google Scholar 

  • Aroca R, Porcel R, Ruiz-Lozano JM (2007) How does arbuscular mycorrhizal symbiosis regulate root hydraulic properties and plasma membrane aquaporins in Phaseolus vulgaris under drought, cold or salinity stresses? New Phytol 4:808–816

    Article  Google Scholar 

  • Callaway RM, Brooker RW, Choler P, Kikvidze Z, Lortie CJ, Michalet R, Armas C (2002) Positive interactions among alpine plants increase with stress. Nature 417(6891):844–848

    Article  CAS  PubMed  Google Scholar 

  • Chagnon PL, Bradley RL, Maherali H, Klironomos JN (2013) A trait-based framework to understand life history of mycorrhizal fungi. Trends Plant Sci 18(9):484–491

    Article  CAS  PubMed  Google Scholar 

  • Chai Y, Fan G, Li X, Zheng W (2004) Study on vertical distributional belts and their floristic characters of seed plants from Shegyla Mountains of Xizang (Tibet), China. Guangxi Zhiwu 24(2):107–112 (in Chinese)

    Google Scholar 

  • Chevin LM, Collins S, Lefèvre F (2013) Phenotypic plasticity and evolutionary demographic responses to climate change: taking theory out to the field. Funct Ecol 27(4):967–979

    Article  Google Scholar 

  • Davis MB, Shaw RG (2001) Range shifts and adaptive responses to Quaternary climate change. Science 292(5517):673–679

    Article  CAS  PubMed  Google Scholar 

  • Dodd JC (2000) The role of arbuscular mycorrhizal fungi in agro-and natural ecosystems. Outlook Agric 29(1):55–55

    Article  Google Scholar 

  • Fabbro T, Körner C (2004) Altitudinal differences in flower traits and reproductive allocation. Flora-Morphol Distrib Funct Ecol Plants 199(1):70–81

    Article  Google Scholar 

  • Fan DM, Yang YP (2009) Altitudinal variations in flower and bulbil production of an alpine perennial, Polygonum viviparum L. (Polygonaceae). Plant Biol 11(3):493–497

    Article  PubMed  Google Scholar 

  • Geng Y, Wang L, Jin D, Liu H, He JS (2014) Alpine climate alters the relationships between leaf and root morphological traits but not chemical traits. Oecologia 175(2):445–455

    Article  PubMed  Google Scholar 

  • Goh CH, Vallejos DFV, Nicotra AB, Mathesius U (2013) The impact of beneficial plant-associated microbes on plant phenotypic plasticity. J Chem Ecol 39(7):826–839

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Grabherr G, Gottfried M, Pauli H (2009) Climate effects on mountain plants. Nature 369(6480):448–448

    Article  Google Scholar 

  • Grassein F, Lavorel S, Till-Bottraud I (2014) The importance of biotic interactions and local adaptation for plant response to environmental changes: field evidence along an elevational gradient. Glob Chang Biol 20(5):1452–1460

    Article  PubMed  Google Scholar 

  • Grman E (2012) Plant species differ in their ability to reduce allocation to non-beneficial arbuscular mycorrhizal fungi. Ecology 93(4):711–718

    Article  PubMed  Google Scholar 

  • Grman E, Robinson TM (2013) Resource availability and imbalance affect plant-mycorrhizal interactions: a field test of three hypotheses. Ecology 94(1):62–71

    Article  PubMed  Google Scholar 

  • Hawkes CV, Hartley IP, Ineson P, Fitter AH (2008) Soil temperature affects carbon allocation within arbuscular mycorrhizal networks and carbon transport from plant to fungus. Glob Chang Biol 14(5):1181–1190

    Article  Google Scholar 

  • Hempel S, Götzenberger L, Kühn I, Michalski SG, Rillig MC, Zobel M, Moora M (2013) Mycorrhizas in the Central European flora: relationships with plant life history traits and ecology. Ecology 94(6):1389–1399

    Article  PubMed  Google Scholar 

  • Hodge A, Fitter AH (2010) Substantial nitrogen acquisition by arbuscular mycorrhizal fungi from organic material has implications for N cycling. Proc Natl Acad Sci 107(31):13754–13759

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hülber K, Bardy K, Dullinger S (2011) Effects of snowmelt timing and competition on the performance of alpine snowbed plants. Perspect Plant Ecol Evol Syst 13(1):15–26

    Article  Google Scholar 

  • Jakobsen I, Abbott LK, Robson AD (1992) External hyphae of vesicular-arbuscular mycorrhizal fungi associated with Trifolium subterraneum L. 1. Spread of hyphae and phosphorus inflow into roots. New Phytol 120:371–379

    Article  CAS  Google Scholar 

  • Johnson NC (2010) Resource stoichiometry elucidates the structure and function of arbuscular mycorrhizas across scales. New Phytol 185(3):631–647

    Article  CAS  PubMed  Google Scholar 

  • Klein JA, Harte J, Zhao XQ (2004) Experimental warming causes large and rapid species loss, dampened by simulated grazing, on the Tibetan Plateau. Ecol Lett 7(12):1170–1179

    Article  Google Scholar 

  • Körner C (2003) Alpine plant life: functional plant ecology of high mountain ecosystems. Springer Science and Business Media

  • Kytöviita MM (2005) Asymmetric symbiont adaptation to Arctic conditions could explain why high Arctic plants are non-mycorrhizal. FEMS Microbiol Ecol 53(1):27–32

    Article  PubMed  Google Scholar 

  • Li XL, Gai JP, Cai XB, Li XL, Christie P, Zhang F, Zhang J (2014) Molecular diversity of arbuscular mycorrhizal fungi associated with two co-occurring perennial plant species on a Tibetan altitudinal gradient. Mycorrhiza 24(2):95–107

    Article  CAS  PubMed  Google Scholar 

  • Li XL, Zhang JL, Gai JP, Cai XB, Christie P, Li XL (2015) Contribution of arbuscular mycorrhizal fungi of sedges to soil aggregation along an altitudinal alpine grassland gradient on the Tibetan Plateau. Environ Microbiol 17(8):2841–2857

    Article  CAS  PubMed  Google Scholar 

  • Lugo MA, Negritto MA, Jofré M, Anton A, Galetto L (2012) Colonization of native Andean grasses by arbuscular mycorrhizal fungi in Puna: a matter of altitude, host photosynthetic pathway and host life cycles. FEMS Microbiol Ecol 81(2):455–466

    Article  CAS  PubMed  Google Scholar 

  • McGonigle TP, Miller MH, Evans DG, Fairchild GL, Swan JA (1990) A new method which gives an objective measure of colonization of roots by vesicular arbuscular mycorrhizal fungi. New Phytol 115:495–501

    Article  Google Scholar 

  • Miller RM, Reinhardt DR, Jastrow JD (1995) External hyphal production of vesicular arbuscular mycorrhizal fungi in pasture and tallgrass prairie communities. Oecologia 103:17–23

    Article  Google Scholar 

  • Murphy J, Riley JP (1962) A modified single solution method of the determination of phosphate in natural waters. Anal Chim Acta 27:31–36

    Article  CAS  Google Scholar 

  • Parmesan C, Yohe G (2003) A globally coherent fingerprint of climate change impacts across natural systems. Nature 421(6918):37–42

    Article  CAS  PubMed  Google Scholar 

  • Parmesan C, Gaines S, Gonzalez L, Kaufman DM, Kingsolver J, Townsend Peterson A, Sagarin R (2005) Empirical perspectives on species borders: from traditional biogeography to global change. Oikos 108(1):58–75

    Article  Google Scholar 

  • Qiu J (2008) China: the third pole. Nature 454:393–396

    Article  CAS  PubMed  Google Scholar 

  • Ruotsalainen AL, Tuomi J, Vare H (2002) A model for optimal mycorrhizal colonization along altitudinal gradients. Silva Fennica 36(3):681–694

    Article  Google Scholar 

  • Ruotsalainen AL, Väre H, Oksanen J, Tuomi J (2004) Root fungus colonization along an altitudinal gradient in North Norway. Arct Antarct Alp Res 36(2):239–243

    Article  Google Scholar 

  • Schmidt SK, Sobieniak-Wiseman LC, Kageyama SA, Halloy SRP, Schadt CW (2008) Mycorrhizal and dark-septate fungi in plant roots above 4270 meters elevation in the Andes and Rocky Mountains. Arct Antarct Alp Res 40(3):576–583

    Article  Google Scholar 

  • Shi Z, Wang F, Zhang K, Chen Y (2014) Diversity and distribution of arbuscular mycorrhizal fungi along altitudinal gradients in Mount Taibai of the Qinling Mountains. Can J Microbiol 60(12):811–818

    Article  CAS  PubMed  Google Scholar 

  • Shi L, Yang R, Zhang J, Cai X, Christie P, Li XL, Gai J (2015) Evidence for functional divergence in AM fungal communities from different montane altitudes. Fungal Ecol 16:19–25

    Article  Google Scholar 

  • Sundqvist MK, Sanders NJ, Wardle DA (2013) Community and ecosystem responses to elevational gradients: processes, mechanisms, and insights for global change. Annu Rev Ecol Evol Syst 44:261–280

    Article  Google Scholar 

  • Vittoz P, Randin C, Dutoit A, Bonnet F, Hegg O (2009) Low impact of climate change on subalpine grasslands in the Swiss Northern Alps. Glob Chang Biol 15(1):209–220

    Article  Google Scholar 

  • Wang B, French HM (1994) Climate controls and high-altitude permafrost, Qinghai-Xizang (Tibet) Plateau, China. Permafr Periglac Process 5(2):87–100

    Article  Google Scholar 

  • Wang P, Zhang JJ, Xia RX, Shu B, Wang MY, Wu QS, Dong T (2011) Arbuscular mycorrhiza, rhizospheric microbe populations and soil enzyme activities in citrus orchards under two types of no-tillage soil management. Span J Agric Res 9(4):1307–1318

    Article  Google Scholar 

  • Zhao ZG, Du GZ, Zhou XH, Wang MT, Ren QJ (2006) Variations with altitude in reproductive traits and resource allocation of three Tibetan species of Ranunculaceae. Aust J Bot 54(7):691–700

    Article  Google Scholar 

  • Zheng C, Ji B, Zhang J, Zhang F, Bever JD (2015) Shading decreases plant carbon preferential allocation towards the most beneficial mycorrhizal mutualist. New Phytol 205(1):361–368

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Natural Science Foundation of China (NSFC, Projects 41071179 and 41271269) and the innovative group grant of NSFC (No. 31121062).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jingping Gai.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(DOCX 15 kb)

ESM 2

(DOCX 18 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, R., Li, S., Cai, X. et al. Responses of arbuscular mycorrhizal symbionts to contrasting environments: field evidence along a Tibetan elevation gradient. Mycorrhiza 26, 623–632 (2016). https://doi.org/10.1007/s00572-016-0701-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00572-016-0701-8

Keywords

Navigation