Advertisement

Mycorrhiza

, Volume 26, Issue 5, pp 489–496 | Cite as

Differences in the composition of arbuscular mycorrhizal fungal communities promoted by different propagule forms from a Mediterranean shrubland

  • Sara Varela-Cervero
  • Álvaro López-García
  • José Miguel Barea
  • Concepción Azcón-Aguilar
Original Article

Abstract

As it is well known, arbuscular mycorrhizal (AM) colonization can be initiated from the following three types of fungal propagules: spores, extraradical mycelium (ERM), and mycorrhizal root fragments harboring intraradical fungal structures. It has been shown that biomass allocation of AM fungi (AMF) among these three propagule types varies between fungal taxa, as also differs the ability of the different AMF propagule fractions to initiate new colonizations. In this study, the composition of the AMF community in the roots of rosemary (Rosmarinus officinalis L., a characteristic Mediterranean shrub), inoculated with the three different propagule types, was analyzed. Accordingly, cuttings from this species were inoculated with either AMF spores, ERM, or colonized roots extracted from a natural soil. The AMF diversity within the rosemary roots was characterized using terminal restriction fragment length polymorphism (T-RFLP) of the small subunit (SSU) rDNA region. The AMF community established in the rosemary plants was significantly different according to the type of propagule used as inoculum. AMF taxa differed in their ability to initiate new colonizations from each propagule type. Results suggest different colonization strategies for the different AMF families involved, Glomeraceae and Claroideoglomeraceae colonizing mainly from colonized roots whereas Pacisporaceae and Diversisporaceae from spores and ERM. This supports that AMF taxa show contrasting life-history strategies in terms of their ability to initiate new colonizations from the different propagule types. Further research to fully understand the colonization and dispersal abilities of AMF is essential for their rational use in ecosystem restoration programs.

Keywords

Arbuscular mycorrhizal fungi Propagule types Colonization strategies Life-history traits Mediterranean environments 

Notes

Acknowledgments

Sara Varela-Cervero thanks the Formación de Personal Investigador Programme (Ministerio de Ciencia e Innovación) for the financial support. This research was supported by the Spanish government under the Plan Nacional de I + D + I, co-financed by FEDER funds (project CGL-2009-08825), and the Junta de Andalucía, Consejería de Economía, Innovación y Ciencia (project CVI-7640). We also thank the Consejería de Medio Ambiente, Junta de Andalucía (Spain), for the permission to work in Sierra de Baza Natural Park. We sincerely thank Estefanía Berrio for the technical assistance.

Supplementary material

572_2016_687_MOESM1_ESM.docx (19 kb)
ESM 1 (DOCX 19 kb)

References

  1. Abbott LK, Robson AD, Gazey C (1994) Selection of inoculants vesicular-arbuscular mycorrhizal fungi. In: Norris JR, Read D, Varma AK (eds) Methods in microbiology, vol. 24. Techniques for the study of mycorrhiza. Academic, London, pp 1–21Google Scholar
  2. Allen MF, Kitajima K (2013) In situ high-frequency observations of mycorrhizas. New Phytol 200:222–228CrossRefPubMedGoogle Scholar
  3. Barea JM, Pozo MJ, López-Ráez JA, Aroca R, Ruíz-Lozano JM, Ferrol N, Azcón R, Azcón-Aguilar C (2013) Mycorrhizas and their significance in promoting soil-plant systems sustainability against environmental stresses. In: Rodelas B, González-López J (eds) Beneficial plant-microbial interactions: ecology and applications. CRC Press, USA, pp 353–387CrossRefGoogle Scholar
  4. Biermann B, Linderman RG (1983) Mycorrhizal roots, intrarradical vesicles and extraradical vesicles as inoculum. New Phytol 95:97–105CrossRefGoogle Scholar
  5. Brundrett MC, Abbot LK, Jasper DA (1999) Glomalean fungi from tropical Australia. I. Comparison of the effectiveness of isolation procedures. Mycorrhiza 8:305–314CrossRefGoogle Scholar
  6. Chagnon PL (2014) Ecological and evolutionary implications of hyphal anastomosis in arbuscular mycorrhizal fungi. FEMS Microbiol Ecol 88:437–444CrossRefPubMedGoogle Scholar
  7. Chagnon PL, Bradley RL, Maherali H, Klironomos JN (2013) A trait-based framework to understand life history of mycorrhizal fungi. Trends Plant Sci 18:484–491CrossRefPubMedGoogle Scholar
  8. Chytrý M, Tichý L, Holt J, Botta-Dukát Z (2002) Determination of diagnostic species with statistical fidelity measures. J Veg Sci 13:79–90CrossRefGoogle Scholar
  9. de Cáceres M, Legendre P (2009) Associations between species and groups of sites: indices and statistical inference. Ecology 90:3566–3574CrossRefPubMedGoogle Scholar
  10. de la Providencia IE, de Souza FA, Fernandez F, Delmas NS, Declerck S (2005) Arbuscular mycorrhizal fungi reveal distinct patterns of anastomosis formation and hyphal healing mechanisms between different phylogenic groups. New Phytol 165:261–271CrossRefPubMedGoogle Scholar
  11. Dickie IA, FitzJohn RG (2007) Using terminal restriction fragment length polymorphism (T-RFLP) to identify mycorrhizal fungi: a methods review. Mycorrhiza 17:259–270CrossRefPubMedGoogle Scholar
  12. Fitter AH (2005) Darkness visible: reflections on underground ecology. J Ecol 93:231–243CrossRefGoogle Scholar
  13. Gerdemann JW, Nicolson TH (1963) Spores of mycorrhizal Endogone species extracted from the soil by wet sieving and decanting. Trans Brit Mycol Soc 46:235–244CrossRefGoogle Scholar
  14. Grime JP, Mackey JM, Hillier SH, Read DJ (1987) Floristic diversity in a model system using experimental microcosms. Nature 328:420–422CrossRefGoogle Scholar
  15. Gutjahr C, Parniske M (2013) Cell and developmental biology of arbuscular mycorrhiza symbiosis. Ann Rev Cell Dev Biol 29:593–617CrossRefGoogle Scholar
  16. Hart MM, Reader JR (2002) Taxonomic basis for variation in the colonization strategy of arbuscular mycorrhizal fungi. New Phytol 153:335–344CrossRefGoogle Scholar
  17. Helgason T, Fitter AH (2009) Natural selection and the evolutionary ecology of the arbuscular mycorrhizal fungi (Phylum Glomeromycota). J Exp Bot 60:2465–2480CrossRefPubMedGoogle Scholar
  18. Hempel S, Renker C, Buscot F (2007) Differences in the species composition of arbuscular mycorrhizal fungi in spore, root and soil communities in a grassland ecosystem. Environ Microbiol 9:1930–1938CrossRefPubMedGoogle Scholar
  19. Hewitt EJ (1952) Sand and water culture methods used in the study of plant nutrition. Technical Communication 22, Farnham Royal, Commonwealth Agricultural Bureaux, Bucks, LondonGoogle Scholar
  20. Ijdo M, Schtickzelle N, Cranenbrouck S, Declerck S (2010) Do arbuscular mycorrhizal fungi with contrasting life-history strategies differ in their responses to repeated defoliation? FEMS Microbiol Ecol 72:114–122CrossRefPubMedGoogle Scholar
  21. Jakobsen I (2004) Hyphal fusion to plant species connections—giant mycelia and community nutrient flow. New Phytol 164:4–7CrossRefGoogle Scholar
  22. Jeffries P, Barea JM (2012) Arbuscular mycorrhiza—a key component of sustainable plant-soil ecosystems. In: Hock B (ed) The mycota IX. Springer, Berlín, pp 51–75Google Scholar
  23. Klironomos JN, Hart MM (2002) Colonization of roots by arbuscular mycorrhizal fungi using different sources of inoculum. Mycorrhiza 12:181–184CrossRefPubMedGoogle Scholar
  24. Lavorel S, Grigulis K, Lamarque P, Colace MP, Garden D et al (2011) Using plant functional traits to understand the landscape distribution of multiple ecosystem services. J Ecol 99:135–147CrossRefGoogle Scholar
  25. Lee J, Lee S, Young JPW (2008) Improved PCR primers for the detection and identification of arbuscular mycorrhizal fungi. FEMS Microbiol Ecol 65:339–349CrossRefPubMedGoogle Scholar
  26. López-García A, Azcón-Aguilar C, Barea JM (2014a) The interactions between plant life form and fungal traits of arbuscular mycorrhizal fungi determine the symbiotic community. Oecologia 176:1075–1086CrossRefPubMedGoogle Scholar
  27. López-García A, Palenzuela J, Barea JM, Azcón-Aguilar C (2014b) Life-history strategies of arbuscular mycorrhizal fungi determine succession into roots of Rosmarinus officinalis L., a characteristic woody perennial plant species from Mediterranean ecosystems. Plant Soil 379:247–260CrossRefGoogle Scholar
  28. Mäder P, Vierheilig H, Streitwolf-Engel R, Boller T, Frey B, Christine P, Wiemken A (2000) Transport of 15N from a soil compartment separated by a polytetrafluoroethylene membrane to plant roots via the hyphae of arbuscular mycorrhizal fungi. New Phytol 146:155–161CrossRefGoogle Scholar
  29. Maherali H, Klironomos JN (2007) Influence of phylogeny on fungal community assembly and ecosystem functioning. Science 316:1746–1748CrossRefPubMedGoogle Scholar
  30. Maherali H, Klironomos JN (2012) Phylogenetic and trait-based assembly of arbuscular mycorrhizal fungal communities. PLoS ONE 7, e36695CrossRefPubMedPubMedCentralGoogle Scholar
  31. Martiny JBH, Bohannan BJ, Brown JH, Colwell RK, Fuhrman JA et al (2006) Microbial biogeography: putting microorganisms on the map. Nat Rev Microbiol 4:102–112CrossRefPubMedGoogle Scholar
  32. McArdle BH, Anderson MJ (2001) Fitting multivariate models to community data: a comment on distance-based redundancy analysis. Ecology 82:290–297CrossRefGoogle Scholar
  33. McGonigle TP, Miller MH, Evans DG, Fairchild GL, Swan JA (1990) A new method which gives an objective measure of colonization of roots by vesicular-arbuscular mycorrhizal fungi. New Phytol 115:495–501CrossRefGoogle Scholar
  34. Miller RM, Jastrow JD (2000) Mycorrhizal fungi influence soil structure. In: Kapulnik Y, Douds DD (eds) Arbuscular mycorrhizae: molecular biology and physiology. Kluwer Academic Press, DordrechtGoogle Scholar
  35. Newsham KK, Fitter AH, Watkinson AR (1995) Multi-functionality and biodiversity in arbuscular mycorrhizas. Trends Ecol Evol 10:407–411CrossRefPubMedGoogle Scholar
  36. Oksanen J, Blanchet FG, Kindt R, Legendre P, Minchin PR, et al. (2015) Vegan: community ecology package, ver.2.3-1. Available from http://CRAN.Rproject.org/package=vegan
  37. Öpik M, Vanatoa A, Vanatoa E, Moora M, Davison J, Kalwij JM, Reier U, Zobel M (2010) The online database MaarjAM reveals global and ecosystemic distribution patterns in arbuscular mycorrhizal fungi (Glomeromycota). New Phytol 188:223–241Google Scholar
  38. Phillips JM, Hayman DS (1970) Improved procedures for clearing roots and staining parasitic and vesicular-arbuscular mycorrhizal fungi for rapid assessment of infection. Trans Brit Mycol Soc 55:158–161CrossRefGoogle Scholar
  39. Powell JR, Parrent JL, Hart MM, Klironomos JN, Rillig MC, Maherali H (2009) Phylogenetic trait conservatism and the evolution of functional trade-offs in arbuscular mycorrhizal fungi. Proc Roy Soc B-Biol Sci 276:4237–4245CrossRefGoogle Scholar
  40. Redecker D, Schüßler A, Stockinger H, Stürmer SL, Morton JB, Walker C (2013) An evidence-based consensus for the classification of arbuscular mycorrhizal fungi (Glomeromycota). Mycorrhiza 23:515–531Google Scholar
  41. Ripley B, Venables B, Bates DM, Hornik K, Gebhardt A, Firth D (2014) MASS: support functions and datasets for Venables and Ripley’s MASS, ver. 7.3-33. [WWW document]. URL http://CRAN.Rproject.org/package=MASS
  42. Saks Ü, Davison J, Öpik M, Vasar M, Moora M, Zobel M (2014) Root-colonizing and soil-borne communities of arbuscular mycorrhizal fungi in a temperate forest understorey. Botany 92:277–285CrossRefGoogle Scholar
  43. Schalamuk S, Cabello M (2010) Arbuscular mycorrhizal fungal propagules from tillage and no-tillage systems: possible effects on Glomeromycota diversity. Mycologia 102:261–268CrossRefPubMedGoogle Scholar
  44. Sieverding E (1991) Vesicular-arbuscular mycorrhyza management in tropical agrosystems. GTZ, FriedlandGoogle Scholar
  45. Smith SE, Read DJ (2008) Mycorrhizal symbiosis, thirdth edn. Elsevier, Academic Press, New YorkGoogle Scholar
  46. Smith SE, Smith FA (2011) Roles of arbuscular mycorrhizas in plant nutrition and growth: new paradigms from cellular to ecosystem scales. Annu Rev Plant Biol 62:227–250CrossRefPubMedGoogle Scholar
  47. Tichy L, Chytry M (2006) Statistical determination of diagnostic species for site groups of unequal size. J Veg Sci 17:809–818CrossRefGoogle Scholar
  48. van der Heijden MGA, Klironomos JN, Ursic M, Moutoglis P, Streitwolf-Engel R et al (1998) Mycorrhizal fungal diversity determines plant biodiversity, ecosystem variability and productivity. Nature 396:69–72CrossRefGoogle Scholar
  49. van der Heijden MGA, Martin FM, Selosse MA et al (2015) Mycorrhizal ecology and evolution: the past, the present, and the future. New Phytol 205:1406–1423CrossRefPubMedGoogle Scholar
  50. Varela-Cervero S, Vasar M, Davison J, Barea JM, Öpik M, Azcón-Aguilar C (2015) The composition of arbuscular mycorrhizal fungal communities differs among the roots, spores and extraradical mycelia associated with five Mediterranean plant species. Environ Microbiol 17:2882–2895CrossRefPubMedGoogle Scholar
  51. Voets L, de La Providencia IE, Declerck S (2006) Glomeraceae and Gigasporaceae differ in their ability to form hyphal networks. New Phytol 172:185–188CrossRefPubMedGoogle Scholar
  52. Werner G, Kiers ET (2015) Order of arrival structures arbuscular mycorrhizal colonization of plants. New Phytol 205:1515–1524CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  1. 1.Soil Microbiology and Symbiotic Systems DepartmentEstación Experimental del Zaidín, CSICGranadaSpain

Personalised recommendations