Skip to main content
Log in

The influence of phosphorus availability and Laccaria bicolor symbiosis on phosphate acquisition, antioxidant enzyme activity, and rhizospheric carbon flux in Populus tremuloides

  • Original Paper
  • Published:
Mycorrhiza Aims and scope Submit manuscript

Abstract

Many forest tree species are dependent on their symbiotic interaction with ectomycorrhizal (ECM) fungi for phosphorus (P) uptake from forest soils where P availability is often limited. The ECM fungal association benefits the host plant under P limitation through enhanced soil exploration and increased P acquisition by mycorrhizas. To study the P starvation response (PSR) and its modification by ECM fungi in Populus tremuloides, a comparison was made between nonmycorrhizal (NM) and mycorrhizal with Laccaria bicolor (Myc) seedlings grown under different concentrations of phosphate (Pi) in sand culture. Although differences in growth between NM and Myc plants were small, Myc plants were more effective at acquiring P from low Pi treatments, with significantly lower k m values for root and leaf P accumulation. Pi limitation significantly increased the activity of catalase, ascorbate peroxidase, and guaiacol-dependent peroxidase in leaves and roots to greater extents in NM than Myc P. tremuloides. Phosphoenolpyruvate carboxylase activity also increased in NM plants under P limitation, but was unchanged in Myc plants. Formate, citrate, malonate, lactate, malate, and oxalate and total organic carbon exudation by roots was stimulated by P limitation to a greater extent in NM than Myc plants. Colonization by L. bicolor reduced the solution Pi concentration thresholds where PSR physiological changes occurred, indicating that enhanced Pi acquisition by P. tremuloides colonized by L. bicolor altered host P homeostasis and plant stress responses to P limitation. Understanding these plant–symbiont interactions facilitates the selection of more P-efficient forest trees and strategies for tree plantation production on marginal soils.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Alvarez M, Huygens D, Olivares E, Saavedra I, Alberdi M, Valenzuela E (2009) Ectomycorrhizal fungi enhance nitrogen and phosphorus nutrition of Nothofagus dombeyi under drought conditions by regulating assimilative enzyme activities. Physiol Plant 136:26–36

    Article  Google Scholar 

  • Amthor JS, McCree KJ (1990) The carbon balance of stressed plants. In: Alscher RG, Cumming JR (eds) Stress responses in plants: adaptation and acclimation mechanisms. Wiley-Liss, New York, pp 1–15

    Google Scholar 

  • Aono T, Kanada N, Ijima A, Oxaizu H (2001) The response of the phosphate uptake system and the organic acid exudation system to phosphate starvation in Sesbania rostrata. Plant Cell Physiol 42:1253–1264

    Article  CAS  PubMed  Google Scholar 

  • Batjes NH (1997) A world dataset of derived soil properties by FAOU/NESCO soil unit for global modeling. Soil Use Manag 13:9–16

    Article  Google Scholar 

  • Baum C, Stetter U, Makeschin F (2002) Growth response of Populus trichocarpa to inoculation by the ectomycorrhizal fungus Laccaria laccata in a pot and a field experiment. Forest Ecol Manag 163:1–8

    Article  Google Scholar 

  • Beauchamp C, Fridovich I (1971) Superoxide dismutase: improved assays and an assay applicable to polyacrylamide gels. Anal Biochem 44:276–287

    Article  CAS  PubMed  Google Scholar 

  • Bonan GB, Shugart HH (1989) Environmental factors and ecological processes in boreal forests. Annu Rev Ecol Syst 20:1–28

    Article  Google Scholar 

  • Bradford M (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254

    Article  CAS  PubMed  Google Scholar 

  • Bramble WC, Ashley RH (1955) Natural revegetation of spoil banks in central Pennsylvania. Ecology 36:417–423

    Article  Google Scholar 

  • Burger JA (2002) Soil and long-term site productivity values. In: Richardson J, Björheden R, Hakkila P, Lowe AT, Smith CT (eds) Bioenergy from sustainable forestry: guiding principles and practice. Kluwer, Dordrecht, pp 165–189

    Google Scholar 

  • Buée M, Courty PE, Mignot D, Garbaye J (2007) Soil niche effect on species diversity and catabolic activities in an ectomycorrhizal fungal community. Soil Biol Biochem 39:1947–1955

    Article  Google Scholar 

  • Burns RM, Honkala BH (1990) Silvics of North America, vol 2. USDA Forest Service, Washington, DC

    Google Scholar 

  • Casarin V, Plassard C, Hinsinger P, Arvieu JC (2004) Quantification of ectomycorrhizal fungal effects on the bioavailability and mobilization of soil P in the rhizosphere of Pinus pinaster. New Phytol 163:177–185

    Article  Google Scholar 

  • Chen HYH, Krestov PV, Klinka K (2002) Trembling aspen site index in relation to environmental measures of site quality at two spatial scales. Can J For Res 32:112–119

    Article  Google Scholar 

  • Colpaert JV, van Tichelen KK, van Assche JA, van Laere A (1999) Short-term phosphorus uptake rates in mycorrhizal and non-mycorrhizal roots of intact Pinus sylvestris seedlings. New Phytol 143:589–597

    Article  CAS  Google Scholar 

  • Courty PE, Franc A, Garbaye J (2010) Temporal and functional pattern of secreted enzyme activities in an ectomycorrhizal community. Soil Biol Biochem 42:2022–2025

    Article  CAS  Google Scholar 

  • Cumming JR (1996) Phosphate-limitation physiology in ectomycorrhizal pitch pine (Pinus rigida) seedlings. Tree Physiol 16:977–983

    Article  PubMed  Google Scholar 

  • Cumming JR, Cumming AB, Taylor GJ (1992) Patterns of root respiration associated with the induction of aluminium tolerance in Phaseolus vulgaris L. J Exp Bot 43:1075–1081

    Article  CAS  Google Scholar 

  • Cumming JR, Swiger TD, Kurnik BS, Panaccione DG (2001) Organic acid exudation by Laccaria bicolor and Pisolithus tinctorius exposed to aluminum in vitro. Can J For Res 31:703–710

    Google Scholar 

  • Cumming JR, Weinstein LH (1990) Aluminum–mycorrhizal interactions in the physiology of pitch pine seedlings. Plant Soil 125:7–18

    Article  CAS  Google Scholar 

  • Dakora FD, Phillips DA (2002) Root exudates as mediators of mineral acquisition in low-nutrient environments. Plant Soil 245:35–47

    Article  CAS  Google Scholar 

  • Di Battista C, Stenstrom E, Le Tacon F, Selosse MA, Bouchard D (1996) Variations in symbiotic efficiency, phenotypic characters and ploidy level among different isolates of the ectomycorrhizal basidiomycete Laccaria bicolor strain S 238. Mycol Res 100:1315–1324

    Article  Google Scholar 

  • Dipierro S, De Leonardis S (1997) The ascorbate system and lipid peroxidation in stored potato (Solanum tuberosum L.) tubers. J Exp Bot 48:779–783

    Article  CAS  Google Scholar 

  • Giesler R, Andersson T, Lövgren L, Persson P (2005) Phosphate sorption in aluminum- and iron-rich humus soils. Soil Sci Soc Am J 69:77–86

    CAS  Google Scholar 

  • Giovannetti M, Mosse B (1980) An evaluation of techniques for measuring vesicular arbuscular mycorrhizal infection in roots. New Phytol 84:489–500

    Article  Google Scholar 

  • Gradowski T, Thomas SC (2006) Phosphorus limitation of sugar maple growth in central Ontario. For Ecol Manage 226:104–109

    Article  Google Scholar 

  • Gehring CA, Mueller RC, Whitham TG (2006) Environmental and genetic effects on the formation of ectomycorrhizal and arbuscular mycorrhizal associations in cottonwoods. Oecologia 149:158–164

    Article  PubMed  Google Scholar 

  • Hobbie EA (2006) Carbon allocation to ectomycorrhizal fungi correlates with belowground allocation in culture studies. Ecology 87:563–569

    Article  PubMed  Google Scholar 

  • Huang WZ, Schoenau JJ (1997) Seasonal and spatial variations in soil nitrogen and phosphorus supply rates in a boreal aspen forest. Can J Soil Sci 77:597–612

    Article  Google Scholar 

  • Jagtap V, Bhargava S, Streb P, Feierabend J (1998) Comparative effect of water, heat and light stresses on photosynthetic reactions in Sorghum bicolor (L.) Moench. J Exp Bot 49:1715–1721

    CAS  Google Scholar 

  • Johansson EM, Fransson PMA, Finlay RD, van Hees PAW (2009) Quantitative analysis of soluble exudates produced by ectomycorrhizal roots as response to ambient and elevated CO2. Soil Biol Biochem 41:1111–1116

    Article  CAS  Google Scholar 

  • Johnson D, Martin F, Cairney JWG, Anderson IC (2012) The importance of individuals: intraspecific diversity of mycorrhizal plants and fungi in ecosystems. New Phytol 194:614–628

    Article  PubMed  Google Scholar 

  • Johnson JF, Vance CP, Allan D (1996) Phosphorus deficiency in Triticum aestivum L. Altered lateral root development and enhanced expression of phosphoenolpyruvate carboxylase. Plant Physiol 112:31–41

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Jones JB Jr, Case VW (1990) Sampling, handling, and analyzing plant tissue samples. In: Westerman RL (ed) Soil testing and plant analysis, 3rd edn. Soil Science Society of America, Madison, WI, pp 389–427

    Google Scholar 

  • Kandlbinder A, Finkemeier I, Wormuth D, Hanitzsch M, Dietz KJ (2004) The antioxidant status of photosynthesizing leaves under nutrient deficiency: redox regulation, gene expression and antioxidant activity in Arabidopsis thaliana. Physiol Plant 120:63–73

    Article  CAS  PubMed  Google Scholar 

  • Klugh KR, Cumming JR (2007) Variations in organic acid exudation and aluminum resistance among arbuscular mycorrhizal species colonizing Liriodendron tulipifera. Tree Physiol 27:1103–1112

    Article  CAS  PubMed  Google Scholar 

  • Klugh-Stewart K, Cumming JR (2009) Organic acid exudation by mycorrhizal Andropogon virginicus L. (broomsedge) roots in response to aluminum. Soil Biol Biochem 41:367–373

    Article  CAS  Google Scholar 

  • Koske RE, Gemma JN (1989) A modified procedure for staining roots to detect VA mycorrhizas. Mycol Res 92:486–505

    Article  Google Scholar 

  • Kroehler CJ, Antibus RK, Linkins AE (1988) The effects of organic and inorganic phosphorus concentration on the acid phosphatase activity of ectomycorrhizal fungi. Can J Bot 66:750–756

    Article  CAS  Google Scholar 

  • Kochian LV, Pineros MA, Hoekenga OA (2004) How do crop plants tolerate acid soils? Mechanisms of aluminum tolerance and phosphorous efficiency. Annu Rev Plant Biol 55:459–493

    Article  CAS  PubMed  Google Scholar 

  • Labbé J, Zhang X, Yin T, Schmutz J, Grimwood J, Martin F, Tuskan GA, Le Tacon F (2008) A genetic linkage map for the ectomycorrhizal fungus Laccaria bicolor and its alignment to the whole-genome sequence assemblies. New Phytol 180:16–328

    Google Scholar 

  • Langenfeld-Heyser R, Gao J, Ducic T, Tachd Ph LCF, Fritz E, Gafur A, Polle A (2007) Paxillus involutus mycorrhiza attenuate NaCl-stress responses in the salt-sensitive hybrid poplar Populus × canescens. Mycorrhiza 17:121–131

    Article  CAS  PubMed  Google Scholar 

  • Leyval C, Berthelin J (1993) Rhizodeposition and net release of soluble organic compounds by pine and beech seedlings inoculated with rhizobacteria and ectomycorrhizal fungi. Biol Fertil Soils 15:259–267

    Article  CAS  Google Scholar 

  • Liu Q, Grace LJ, Hedley MJ, Loganathan P (2008) Effect of mycorrhizal inoculation on rhizosphere properties, phosphorus uptake and growth of pine seedlings treated with and without a phosphate rock fertilizer. J Plant Nutr 31:137–156

    Article  Google Scholar 

  • López-Bucio J, Cruz-Ramírez A, Herrera-Estrella L (2003) The role of nutrient availability in regulating root architecture. Curr Opin Plant Biol 6:280–287

    Article  PubMed  Google Scholar 

  • Loth-Pereda V, Orsini E, Courty P-E, Lota F, Kohler A, Diss L, Blaudez D, Chalot M, Nehls U, Bucher M, Martin F (2011) Structure and expression profile of the phosphate Pht1 transporter gene family in mycorrhizal Populus trichocarpa. Plant Physiol 156:2141–2154

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Loustau D, Ben Brahim M, Gaudillére JP, Dreyer E (1999) Photosynthetic responses to phosphorus nutrition in two-year-old maritime pine seedlings. Tree Physiol 19:707–715

    Article  PubMed  Google Scholar 

  • Lynch JP (2011) Root phenes for enhanced soil exploration and phosphorus acquisition: tools for future crops. Plant Physiol 156:1041–1049

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Molina R, Palmer JG (1982) Isolation, maintenance and pure culture manipulation of ectomycorrhizal fungi. In: Schenck NC (ed) Methods and principles of mycorrhizal research. American Phytopathological Society, St Paul, MN, pp 115–129

    Google Scholar 

  • Moore TR, Trofymow JA, Siltanen M, Kozak LM (2008) Litter decomposition and nitrogen and phosphorus dynamics in peatlands and uplands over 12 years in central Canada. Oecologia 157:317–325

    Article  PubMed  Google Scholar 

  • Naik D, Smith E, Cumming J (2009) Rhizosphere carbon deposition, oxidative stress and nutritional changes in two poplar species exposed to aluminum stress. Tree Physiol 29:423–436

    Article  CAS  PubMed  Google Scholar 

  • Nehls U, Hampp R (2000) Carbon allocation in ectomycorrhizas. Physiol Mol Plant Pathol 57:95–100

    Article  CAS  Google Scholar 

  • Neumann G, Massonneau A, Martinoia E, Romheld V (1999) Physiological adaptations to phosphorus deficiency during proteoid root development in white lupin. Planta 208:373–382

    Article  CAS  Google Scholar 

  • Neville J, Tessier JL, Morrison I, Scarratt J, Canning B, Klironomos JN (2002) Soil depth distribution of ecto- and arbuscular mycorrhizal fungi associated with Populus tremuloides within a 3-year-old boreal forest clear-cut. Appl Soil Ecol 19:209–216

    Article  Google Scholar 

  • Nguyen C (2003) Rhizodeposition of organic C by plants: mechanisms and controls. Agronomie 23:375–396

    Article  CAS  Google Scholar 

  • Ott T, Fritz E, Polle A, Schützendübel A (2002) Characterisation of antioxidative systems in the ectomycorrhiza-building basidiomycete Paxillus involutus (Bartsch) Fr. and its reaction to cadmium. FEMS Microbiol Ecol 42:359–366

    Article  CAS  PubMed  Google Scholar 

  • Pang J, Ryan MH, Tibbett M, Cawthray GR, Siddique KHM, Bolland MDA, Denton MD, Lambers H (2010) Variation in morphological and physiological parameters in herbaceous perennial legumes in response to phosphorus supply. Plant Soil 331:241–255

    Article  CAS  Google Scholar 

  • Paoli GD, Curran LM (2007) Soil nutrients limit fine litter production and tree growth in mature lowland forest of southwestern Borneo. Ecosystems 10:503–518

    Article  CAS  Google Scholar 

  • Peñaloza E, Silva H, Corcuera LJ, Munoz G, Salvo-Garrido H (2005) Phosphate deficiency regulates phosphoenolpyruvate carboxylase expression in proteoid root clusters of white lupin. J Exp Bot 56:145–153

    PubMed  Google Scholar 

  • Pérez-Torres CA, López-Bucio J, Cruz-Ramírez A, Ibarra-Laclette E, Dharmasiri S, Estelle M, Herrera-Estrella L (2008) Phosphate availability alters lateral root development in Arabidopsis by modulating auxin sensitivity via a mechanism involving the TIR1 auxin receptor. Plant Cell 20:3258–3272

    Article  PubMed Central  PubMed  Google Scholar 

  • Phillips RP, Bernhardt ES, Schlesinger WH (2009) Elevated CO2 increases root exudation from loblolly pine (Pinus taeda) seedlings as an N-mediated response. Tree Physiol 29:1513–1523

    Article  CAS  PubMed  Google Scholar 

  • Phillips RP, Fahey TJ (2006) Tree species and mycorrhizal associations influence the magnitude of rhizosphere effects. Ecology 87:1302–1313

    Article  PubMed  Google Scholar 

  • Pilbeam DJ, Cakamk I, Marchner H, Kirkby EA (1993) Effect of withdrawal of phosphorus on nitrate assimilation and PEP carboxylase activity in tomato. Plant Soil 154:111–117

    Article  CAS  Google Scholar 

  • Pieters AJ, Paul MJ, Lawlor DW (2001) Low sink demand limits photosynthesis under Pi deficiency. J Exp Bot 52:1083–1091

    Article  CAS  PubMed  Google Scholar 

  • Plassard C, Dell B (2010) Phosphorus nutrition of mycorrhizal trees. Tree Physiol 30:1129–1139

    Article  CAS  PubMed  Google Scholar 

  • Plaxton CW, Tran HT (2011) Metabolic adaptations of phosphate-starved plants. Plant Physiol 156:1006–1015

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Qin R, Hirano Y, Brunner I (2007) Exudation of organic acid anions from poplar roots after exposure to Al, Cu and Zn. Tree Physiol 27:313–320

    Article  CAS  PubMed  Google Scholar 

  • Qiu J, Jin X (2002) Development and optimization of organic acid analysis in tobacco with ion chromatography and suppressed conductivity detection. J Chromatogr A 950:81–88

    Article  CAS  PubMed  Google Scholar 

  • Quesnel PO, Côté B (2009) Prevalence of phosphorus, potassium and calcium limitations in white spruce across Canada. J Plant Nutr 32:1290–1305

    Article  CAS  Google Scholar 

  • Raghothama KG, Karthikeyan AS (2005) Phosphate acquisition. Plant Soil 274:37–49

    Article  CAS  Google Scholar 

  • Ranade S, Feierabend J (1991) Comparison of light-induced stress reactions in susceptible and paraquot tolerant green cell cultures of Chenopodium rubrum L. J Plant Physiol 137:749–752

    Article  CAS  Google Scholar 

  • Ratnayake M, Leonard RT, Menge JA (1978) Root exudation in relation to supply of phosphorus and its possible relevance to mycorrhizal formation. New Phytol 81:543–552

    Article  CAS  Google Scholar 

  • Rouached H, Secco D, Arpat BA (2010) Regulation of ion homeostasis in plants: current approaches and future challenges. Plant Signal Behav 5:501–502

    Article  PubMed  Google Scholar 

  • Sandnes A, Eldhuset TD, Wollebæk G (2005) Organic acids in root exudates and soil solution of Norway spruce and silver birch. Soil Biol Biochem 37:259–269

    Article  CAS  Google Scholar 

  • Schack-Kirchner H, Wilpert KV, Hildebrand EF (2000) The spatial distribution of soil hyphae in structured spruce-forest soil. Plant Soil 224:195–205

    Article  CAS  Google Scholar 

  • Schoenau JJ, Stewart JWB, Bettany JR (1989) Forms and cycling of phosphorus in prairie and boreal forest soils. Biogeochemistry 8:223–237

    Article  CAS  Google Scholar 

  • Shi S, Condron L, Larsen S, Richardson AE, Jones E, Jiao J, O’Callaghan M, Stewart A (2011) In situ sampling of low molecular weight organic anions from rhizosphere of radiata pine (Pinus radiata) grown in a rhizotron system. Environ Exp Bot 70:131–142

    Article  CAS  Google Scholar 

  • St Clair SB, Sharpe WE, Lynch JP (2008) Key interactions between nutrient limitation and climatic factors in temperate forests: a synthesis of the sugar maple literature. Can J For Res 38:401–414

    Article  Google Scholar 

  • Smith SE, Jakobsen I, Grønlund M, Smith AF (2011) Roles of arbuscular mycorrhizas in plant phosphorus nutrition: interactions between pathways of phosphorus uptake in arbuscular mycorrhizal roots have important implications for understanding and manipulating plant phosphorus acquisition. Plant Physiol 156:1050–1057

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Tuomi J, Kytőviita MM, Härdling R (2001) Cost efficiency of nutrient acquisition and the advantage of mycorrhizal symbiosis for the host plant. Oikos 92:62–70

    Article  Google Scholar 

  • Uselman SM, Qualls RG, Thomas RB (2000) Effects of increased atmospheric CO2, temperature, and soil N availability on root exudation of dissolved organic carbon by a N-fixing tree (Robinia pseudoacacia L.). Plant Soil 222:191–202

    Article  CAS  Google Scholar 

  • van Hees PAW, Rosling A, Finlay RD (2006) The impact of trees, ectomycorrhiza and potassium availability on simple organic compounds and dissolved organic carbon in soil. Soil Biol Biochem 38:1912–1923

    Article  Google Scholar 

  • van Tichelen KK, Colpaert JV (2000) Kinetics of phosphate absorption by mycorrhizal and non-mycorrhizal Scots pine seedlings. Physiol Plant 110:96–103

    Article  Google Scholar 

  • Vance CP, Uhde-Stone C, Allan DL (2003) Phosphorus acquisition and use: critical adaptations by plants for securing a nonrenewable resource. New Phytol 157:423–447

    Article  CAS  Google Scholar 

  • Visser S, Maynard D, Danielson RM (1998) Response of ecto- and arbuscular mycorrhizal fungi to clear-cutting and the application of chipped aspen wood in a mixedwood site in Alberta, Canada. Appl Soil Ecol 7:257–269

    Article  Google Scholar 

  • Volk S, Feierabend J (1989) Photoinactivation of catalase at low temperature and its relevance to photosynthetic and peroxidase metabolism in leaves. Plant Cell Environ 12:701–712

    Article  CAS  Google Scholar 

  • von Uexküll HR, Mutert E (1995) Global extent, development and economic impact of acid soils. Plant Soil 171:1–15

    Article  Google Scholar 

  • Wallander H (2000) Uptake of P from apatite by Pinus sylvestris seedlings colonized by different ectomycorrhizal fungi. Plant Soil 218:249–256

    Article  CAS  Google Scholar 

  • Wouterlood M, Cawthray GR, Turner S, Lambers H, Veneklaas EJ (2004) Rhizosphere carboxylate concentrations of chickpea are affected by genotype and soil type. Plant Soil 261:1–10

    Google Scholar 

Download references

Acknowledgments

We thank Joshua Smith and Nathaniel Chapman for their excellent technical support. The West Virginia University Eberly College of Arts and Sciences and the United States Department of Energy (FG02-06ER64148) provided financial support for this work.

Conflict of interest

The authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jonathan R. Cumming.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(DOCX 53.6 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Desai, S., Naik, D. & Cumming, J.R. The influence of phosphorus availability and Laccaria bicolor symbiosis on phosphate acquisition, antioxidant enzyme activity, and rhizospheric carbon flux in Populus tremuloides . Mycorrhiza 24, 369–382 (2014). https://doi.org/10.1007/s00572-013-0548-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00572-013-0548-1

Keywords

Navigation