Skip to main content

Advertisement

Log in

Biotrophic transportome in mutualistic plant–fungal interactions

  • Review
  • Published:
Mycorrhiza Aims and scope Submit manuscript

Abstract

Understanding the mechanisms that underlie nutrient use efficiency and carbon allocation along with mycorrhizal interactions is critical for managing croplands and forests soundly. Indeed, nutrient availability, uptake and exchange in biotrophic interactions drive plant growth and modulate biomass allocation. These parameters are crucial for plant yield, a major issue in the context of high biomass production. Transport processes across the polarized membrane interfaces are of major importance in the functioning of the established mycorrhizal association as the symbiotic relationship is based on a ‘fair trade’ between the fungus and the host plant. Nutrient and/or metabolite uptake and exchanges, at biotrophic interfaces, are controlled by membrane transporters whose regulation patterns are essential for determining the outcome of plant–fungus interactions and adapting to changes in soil nutrient quantity and/or quality. In the present review, we summarize the current state of the art regarding transport systems in the two major forms of mycorrhiza, namely ecto- and arbuscular mycorrhiza.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Abbreviations

AAP:

Amino acid permeases

AAT:

Amino acid transporters

ABA:

Abscisic acid

AM:

Arbuscular mycorrhiza

AMT:

Ammonium transporter

APC:

Amino acid/polyamine/organocation

AQPs:

Aquaporins

AQR1:

Acids quinidine resistance 1

ATPase:

Adenosine triphosphate hydrolase

DP:

Direct pathway

ECM:

Ectomycorrhizal

ERM:

Extraradicular mycelium

EST:

Expressed sequence tag

GUS:

β-Glucuronidase gene

HAK:

H+ uptake permease

HIGS:

Host-induced gene silencing

IRM:

Intraradical mycelium

KUP:

K+ uptake permease

LPC:

Lyso-phosphatidylcholine

MIP:

Major intrinsic protein

MP:

Mycorrhizal pathway

MSTs:

Monosaccharide transporters

NCBI:

National Center for Biotechnology Information

NIP:

Nod 26-like intrinsic protein

NiR:

Nitrite reductase

NNP:

Nitrate/nitrite porter

NO3 - :

Nitrate

NR:

Nitrate reductase

NT:

Nitrate transporter

OPT:

Oligopeptide transporter

Pi :

Inorganic phosphate

PIPs:

Plasma membrane intrinsic proteins

POT:

Proton-coupled oligopeptide transporter

PTR:

Peptide transporter

RNAi:

RNA interference

SULTRs:

Sulphate transporters

SUTs/SUCs:

Sucrose transporters

TCA:

Trichloroacetic acid

TIPs:

Tonoplast intrinsic proteins

WT:

Wild type

YAT:

Yeast amino acid transporter

References

  • Allen JW, Shachar-Hill Y (2009) Sulfur transfer through an arbuscular mycorrhiza. Plant Physiol 149:549–560

    PubMed  CAS  Google Scholar 

  • Aroca R, Bago A, Sutka M, Paz JA, Cano C, Amodeo G, Ruiz-Lozano JM (2009) Expression analysis of the first arbuscular mycorrhizal fungi aquaporin described reveals concerted gene expression between salt-stressed and nonstressed mycelium. Mol Plant Microbe Interact 22(9):1169–1178

    PubMed  CAS  Google Scholar 

  • Aroca R, Porcel R, Ruiz-Lozano JM (2007) How does arbuscular mycorrhizal symbiosis regulate root hydraulic properties and plasma membrane aquaporins in Phaseolus vulgaris under drought, cold or salinity stresses? New Phytol 173:808–816

    PubMed  CAS  Google Scholar 

  • Bago B, Pfeffer PE, Abubaker J, Jun J, Allen JW, Brouillette J, Douds DD, Lammers PJ, Shachar-Hill Y (2003) Carbon export from arbuscular mycorrhizal roots involves the translocation of carbohydrate as well as lipid. Plant Physiol 131:1496–1507

    PubMed  CAS  Google Scholar 

  • Bago B, Pfeffer PE, Shachar-Hill Y (2000) Carbon metabolism and transport in arbuscular mycorrhizas. Plant Physiol 124:949–957

    PubMed  CAS  Google Scholar 

  • Baier MC, Keck M, Gödde V, Niehaus K, Kűster H, Hohnjec N (2010) Knockdown of the symbiotic sucrose synthase MtSucS1 affects arbuscule maturation and maintenance in mycorrhizal roots of Medicago truncatula. Plant Physiol 152(2):1000–1014

    PubMed  CAS  Google Scholar 

  • Baker FR, Leach KA, Braun DM (2012) SWEET as sugar: new sucrose effluxers in plants. Mol Plant 5:766–768. doi:10.1093/mp/SSS054

    PubMed  Google Scholar 

  • Balestrini R, Gõmez-Ariza J, Lanfranco L, Bonfante P (2007) Laser microdissection reveals that transcripts for five plant and one fungal phosphate transporter genes are contemporaneously present in arbusculated cells. Mol Plant Microbe Interact 20(9):1055–1062

    PubMed  CAS  Google Scholar 

  • Balzergue C, Puech-Pagès V, Bécard G, Rochange SF (2011) The regulation of arbuscular mycorrhizal symbiosis by phosphate in pea involves early and systemic signalling events. J Exp Bot 62:1049–1060

    PubMed  CAS  Google Scholar 

  • Banerjee R, Evande R, Kabil O, Ojha S, Taoka S (2003) Reaction mechanism and regulation of cystathionine beta-synthase. Biochim Biophys Acta 1647:30–35

    PubMed  CAS  Google Scholar 

  • Benedetto A, Magurno F, Bonfante P, Lanfranco L (2005) Expression profiles of a phosphate transporter gene (GmosPT) from the endomycorrhizal fungus Glomus mosseae. Mycorrhiza 15:620–627

    PubMed  CAS  Google Scholar 

  • Benedito VA, Li H, Dai X, Wandrey M, He J, Kaundal R, Torres-Jerez I, Gomez SK, Harrison MJ, Tang Y, Zhao PX, Udvardi MK (2010) Genomic inventory and transcriptional analysis of Medicago truncatula transporters. Plant Physiol 152:1716–1730

    PubMed  CAS  Google Scholar 

  • Benjdia M, Rikirsch E, Müller T, Morel M, Corratgé C, Zimmermann S, Chalot M, Frommer WB, Wipf D (2006) Peptide uptake in the ectomycorrhizal fungus Hebeloma cylindrosporum: characterization of two di- and tripeptide transporters (HcPTR2A and B). New Phytol 170(2):401–410

    PubMed  CAS  Google Scholar 

  • Blaudez D, Chalot M (2011) Characterization of the ER-located zinc transporter ZnT1 and identification of a vesicular zinc storage compartment in Hebeloma cylindrosporum. Fungal Genet Biol 48:496–503

    PubMed  CAS  Google Scholar 

  • Blee KA, Anderson AJ (2002) Transcripts for genes encoding soluble acid invertase and sucrose synthase accumulate in root tip and cortical cells containing mycorrhizal arbuscules. Plant Mol Biol 50(2):197–211

    PubMed  CAS  Google Scholar 

  • Blee KA, Anderson AJ (1998) Regulation of arbuscule formation by carbon in the plant. Plant J 16(5):523–530

    Google Scholar 

  • Bolchi A, Ruotolo R, Marchini G, Vurro E, di Toppi LS, Kohler A, Tisserant E, Martin F, Ottonello S (2011) Genome-wide inventory of metal homeostasis-related gene products including a functional phytochelatin synthase in the hypogeous mycorrhizal fungus Tuber melanosporum. Fungal Genet Biol 48:573–584

    PubMed  CAS  Google Scholar 

  • Boldt K, Pörs Y, Haupt B, Bitterlich M, Kühn C, Grimm B, Franken P (2011) Photochemical processes, carbon assimilation and RNA accumulation of sucrose transporter genes in tomato arbuscular mycorrhiza. J Plant Physiol 168(11):1256–1263

    PubMed  CAS  Google Scholar 

  • Branscheid A, Sieh D, Pant BD, May P, Devers EA, Elkrog A, Schauser L, Scheible WR, Krajinski F (2010) Expression pattern suggests a role of MiR399 in the regulation of the cellular response to local Pi increase during arbuscular mycorrhizal symbiosis. Mol Plant Microbe Interact 23(7):915–926

    PubMed  CAS  Google Scholar 

  • Bucher M, Wegmüller S, Drissner D (2009) Chasing the structures of small molecules in arbuscular mycorrhizal signaling. Curr Op Plant Biol 12:500–507

    CAS  Google Scholar 

  • Buchner P, Stuiver CE, Westerman S, Wirtz M, Hell R, Hawkesford MJ, De Kok LJ (2004) Regulation of sulfate uptake and expression of sulfate transporter genes in Brassica oleracea as affected by atmospheric H2S and pedospheric sulfate nutrition. Plant Physiol 136:3396–3408

    PubMed  CAS  Google Scholar 

  • Bücking H, Hans R, Heyser W (2007) The apoplast of ectomycorrhizal roots-site of nutrient uptake and nutrient exchange between the symbiotic partners. In: Sattelmacher B, Horst WJ (eds) The apoplast of higher plants: compartment of storage, transport and reactions, Springer, Dordrecht, pp 97–108

  • Bun-ya N, Shikata K, Nakade S, Yompakdee S, Harashima S, Oshima Y (1996) Two new genes, PHO86 and PHO87, involved in inorganic phosphate uptake in Saccharomyces cerevisiae. Curr Genet 29:344–351

    PubMed  CAS  Google Scholar 

  • Bun-ya N, Nishimura M, Harashima S, Oshima Y (1991) The PHO84 gene of Saccharomyces cerevisiae encodes an inorganic phosphate transporter. Mol Cell Biol 11:3229–3238

    PubMed  CAS  Google Scholar 

  • Burleigh SM, Harrison MJ (1998) Characterization of the Mt4 gene from Medicago truncatula. Gene 216:47–53

    PubMed  CAS  Google Scholar 

  • Burleigh SH, Kristensen BK, Bechmann IE (2003) A plasma membrane zinc transporter from Medicago truncatula is up-regulated in roots by Zn fertilization, yet down-regulated by arbuscular mycorrhizal colonization. Plant Mol Biol 52:1077–1088

    PubMed  CAS  Google Scholar 

  • Buscot A, Munch JC, Charcosset JY, Gardes M, Nehls U, Hampp R (2000) Recent advances in exploring physiology and biodiversity of ectomycorrhizas highlight the functioning of these symbioses in ecosystems. FEMS Microbiol Rev 24:601–614

    PubMed  CAS  Google Scholar 

  • Cairney JWG (2005) Basidiomycete mycelia in forest soils: dimensions, dynamics and roles in nutrient distribution. Mycol Res 109:7–20

    PubMed  Google Scholar 

  • Cao J, Huang J, Yang Y, Hu X (2011) Analyses of the oligopeptide transporter gene family in poplar and grape. BMC Genomics 12:465

    PubMed  CAS  Google Scholar 

  • Cappellazzo G, Lanfranco G, Fitz M, Wipf D, Bonfante P (2008) Characterization of an amino acid permease from the endomycorrhizal fungus Glomus mosseae. Plant Physiol 147:429–437

    PubMed  CAS  Google Scholar 

  • Carpaneto A, Geiger D, Bamberg E, Sauer N, Fromm J, Hedrich R (2005) Phloem-localized, proton-coupled sucrose carrier ZmSUT1 mediates sucrose efflux under the control of the sucrose gradient and the proton motive force. J Biol Chem 280(22):21437–21443

    PubMed  CAS  Google Scholar 

  • Casieri L, Gallardo K, Wipf D (2012) Transcriptional response of Medicago truncatula sulfate transporters to arbuscular mycorrhizal symbiosis with and without sulphur stress. Planta 235:1431–1447

    PubMed  CAS  Google Scholar 

  • Chalot M, Plassard C (2011) Ectomycorrhiza and nitrogen provision to the host tree. In: Polacco JC, Todd CD (eds) Ecological aspects of nitrogen metabolism in plants. Wiley, Hoboken, NJ. doi:10.1002/9780470959404.ch4

    Google Scholar 

  • Chalot M, Blaudez D, Brun A (2006) Ammonia: a candidate for nitrogen transfer at the mycorrhizal interface. Trends Plant Sci 11:263–266

    PubMed  CAS  Google Scholar 

  • Chalot M, Javelle A, Blaudez D, Lambilliotte R, Cooke R, Sentenac H, Wipf D, Botton B (2002) An update on nutrient transport process in ectomycorrhizas. Plant Soil 244:165–175

    CAS  Google Scholar 

  • Chen LQ, Qu XQ, Hou BH, Sosso D, Osorio S, Fernie AR, Frommer WB (2012) Sucrose efflux mediated by SWEET proteins as a key step for phloem transport. Science 335(6065):207–211

    PubMed  CAS  Google Scholar 

  • Chen AQ, Gu MA, Sun SB, Zhu LL, Hong SA, Xu GH (2011) Identification of two conserved cis-acting elements, MYCS and P1BS, involved in the regulation of mycorrhiza-activated phosphate transporters in eudicot species. New Phytol 189:1157–1169

    PubMed  CAS  Google Scholar 

  • Chen XY, Hampp R (1993) Sugar uptake by protoplasts of the ectomycorrhizal fungus, Amanita muscaria (L. ex fr.) Hooker. New Phytol 125:601–608

    CAS  Google Scholar 

  • Cherest H, Davidian JC, Thomas D, Benes V, Ansorge W, Surdin-Kerjan Y (1997) Molecular characterization of two high affinity sulfate transporters in Saccharomyces cerevisiae. Genetics 145:627–635

    PubMed  CAS  Google Scholar 

  • Chiou TJ, Liu H, Harrison MJ (2001) The spatial expression patterns of a phosphate transporter (MtPT1) from Medicago truncatula indicate a role in phosphate transport at the root/soil interface. Plant J 25:281–293

    PubMed  CAS  Google Scholar 

  • Clemmensen KE, Sorensen PL, Michelsen A, Jonasson S, Ström L (2008) Site-dependent N uptake from N-form mixtures by arctic plants, soil microbes and ectomycorrhizal fungi. Oecologia 155(4):771–783

    PubMed  Google Scholar 

  • Cooper KM, Tinker PB (1978) Translocation and transfer of nutrients in vesicular-arbuscular mycorrhizas. 2. Uptake and translocation of phosphorus, zinc and sulfur. New Phytol 81:43–52

    CAS  Google Scholar 

  • Corbière HLF (2002) The importance of sucrose synthase for AM symbiosis in maize, in pea and in Medicago. PhD thesis, University of Basel Dotcoral Program. http://edoc.unibas.ch/120/1/DissB_6835.pdf. Accessed 10 July 2002

  • Corratgé-Faillie C, Jabnoune M, Zimmermann S, Véry AA, Fizames C, Sentenac H (2010) Potassium and sodium transport in non-animal cells: the Trk/Ktr/HKT transporter family. Cell Mol Life Sci 67:2511–2532

    PubMed  Google Scholar 

  • Corratgé C, Zimmermann S, Lambilliotte R, Plassard C, Marmeisse R, Thibaud JB, Lacombe B, Sentenac H (2007) Molecular and functional characterization of a Na+–K+ transporter from the Trk family in the ectomycorrhizal fungus Hebeloma cylindrosporum. J Biol Chem 282:26057–26066

    PubMed  Google Scholar 

  • Corrêa A, Hampp R, Magel E, Martins-Loução M-A (2011) Carbon allocation in ectomycorrhizal plants at limited and optimal N supply: an attempt at unraveling conflicting theories. Mycorrhiza 21:35–51

    PubMed  Google Scholar 

  • Couturier J, Montanini B, Martin F, Brun A, Blaudez D, Chalot M (2007) The expanded family of ammonium transporters in the perennial poplar plant. New Phytol 174:137–150

    PubMed  CAS  Google Scholar 

  • Danielson JA, Johanson U (2008) Unexpected complexity of the aquaporin gene family in the moss Physcomitrella patens. BMC Plant Biol 8:45

    PubMed  Google Scholar 

  • Davidian J-C, Hatzfeld Y, Cathala N, Tagmount A, Vidmar JJ (2000) Sulfate uptake and transport in plants. In: Brunold C, Rennenberg H, De Kok LJ, Stulen I, Davidian J-C (eds) Sulfur nutrition and sulfur assimilation in higher plants: molecular, biochemical and physiological aspects. Paul Haupt, Bern, pp 19–40

    Google Scholar 

  • Daza A, Manjón JL, Camacho M, Romero de la Osa L, Aguilar A, Santamaría C (2006) Effect of carbon and nitrogen sources, pH and temperature on in vitro culture of several isolates of A. muscaria caesarea (Scop.:Fr.) Pers. Mycorrhiza 16:133–136

    PubMed  CAS  Google Scholar 

  • Deveau A, Kohler A, Frey-Klett P, Martin F (2008) The major pathways of carbohydrate metabolism in the ectomycorrhizal basidiomycete Laccaria bicolor S238N. New Phytol 180:379–390

    PubMed  CAS  Google Scholar 

  • Dietz S, von Bülow J, Beitz E, Nehls U (2011) The aquaporin gene family of the ectomycorrhizal fungus Laccaria bicolor: lessons for symbiotic functions. New Phytol 190:927–940

    PubMed  CAS  Google Scholar 

  • Dodd IC, Ruiz-Lozano M (2012) Microbial enhancement of crop resource use efficiency. Curr Opin Biotechnol 23:236–242

    PubMed  CAS  Google Scholar 

  • Doidy J, Grace E, Kühn C, Simon-Plas F, Casieri L, Wipf D (2012a) Sugar transporters in plants and in their interactions with fungi. Trends Plant Sci 17(7):413–422

    PubMed  CAS  Google Scholar 

  • Doidy J, van Tuinen D, Lamotte O, Corneillat M, Alcaraz G, Wipf D (2012b) The Medicago truncatula sucrose transporter family. Characterization and implication of key members in carbon partitioning towards arbuscular mycorrhizal fungi. Mol Plant 5(6):1346–1358

    PubMed  CAS  Google Scholar 

  • Drissner D, Kunze G, Callewaert N, Gehrig P, Tamasloukht MB, Boller T, Felix G, Amrhein N, Bucher M (2007) Lyso-phosphatidylcholine is a signal in the arbuscular mycorrhizal symbiosis. Science 318:265–268

    PubMed  CAS  Google Scholar 

  • El-Mesbahi MN, Azcón R, Ruiz-Lozano JM, Aroca R (2012) Plant potassium content modifies the effects of arbuscular mycorrhizal symbiosis on root hydraulic properties in maize plants. Mycorrhiza 22:555–564. doi:10.1007/s00572-012-0433-3

    PubMed  CAS  Google Scholar 

  • Eriksen J, Askegaard M (2000) Sulphate leaching in an organic crop rotation on sandy soil in Denmark. Agric Ecosyst Environ 78:107–114

    CAS  Google Scholar 

  • Facelli E, Smith SE, Facelli JM, Christophersen HM, Smith FA (2010) Underground friends or enemies: model plants help to unravel direct and indirect effects of arbuscular mycorrhizal fungi on plant competition. New Phytol 185:1050–1061

    PubMed  Google Scholar 

  • Fajardo Lopez M, Dietz S, Grunze N, Bloschies J, Weiss M, Nehls U (2008) The sugar porter gene family of Laccaria bicolor: function in ectomycorrhizal symbiosis and soilgrowing hyphae. New Phytol 180:365–378

    Google Scholar 

  • Fellbaum CR, Gachomo EW, Beesetty Y, Choudhari S, Strahan GD, Pfeffer PE, Kiers ET, Bücking H (2012) Carbon availability triggers fungal nitrogen uptake and transport in arbuscular mycorrhizal symbiosis. Proc Natl Acad Sci U S A 109:2666–2671

    PubMed  CAS  Google Scholar 

  • Felsenstein J (1985) Confidence limits on phylogenies: An approach using the bootstrap. Evolution 39:783–791

    Google Scholar 

  • Finlay R (1992) Uptake and translocation of nutrients by ectomycorrhizal fungal mycelia. In: Read DJ, Lewis DH, Fitter AH, Alexander IJ (eds) Mycorrhizas in ecosystems. CAB International, Wallingford, UK, pp 91–97

    Google Scholar 

  • Finlay R, Read DJ (1986) The structure and function of the vegetative mycelium of ectomycorrhizal plants. II. The uptake and distribution of phosphorus by mycelial strands interconnecting host plants. New Phytol 103:157–165

    Google Scholar 

  • Foley JA, DeFries R, Asner JP, Barford C, Bonan G, Carpenter SR, Chapin FS, Coe MT, Daily GC, Gibbs HK, Helkowski JH, Holloway T, Howard EA, Kucharik CJ, Monfreda C, Patz JA, Prentice IC, Ramankutty N, Snyder PK (2005) Global consequences of land use. Science 209:570–574

    Google Scholar 

  • Foyer CH, Noctor G (2009) Redox regulation in photosynthetic organisms: signaling, acclimation, and practical implications. Antioxid Redox Signal 11:861–905

    PubMed  CAS  Google Scholar 

  • Gaber RF, Styles CA, Fink GR (1988) TRK1 encodes a plasma membrane protein required for high-affinity potassium transport in Saccharomyces cerevisiae. Mol Cell Biol 8:2848–2859

    PubMed  CAS  Google Scholar 

  • Gabriel-Neumann E, Neumann G, Leggewiec G, George E (2011) Constitutive overexpression of the sucrose transporter SoSUT1 in potato plants increases arbuscular mycorrhiza fungal root colonization under high, but not under low, soil phosphorus availability. J Plant Physiol 168(9):911–919

    PubMed  CAS  Google Scholar 

  • Gambale F, Uozumi N (2006) Properties of Shaker-type potassium channels in higher plants. J Membr Biol 210:1–19

    PubMed  CAS  Google Scholar 

  • Garcia-Rodríguez S, Azcón-Aguilar C, Ferrol N (2007) Transcriptional regulation of host enzymes involved in the cleavage of sucrose during arbuscular mycorrhizal symbiosis. Phys Plant 129(4):737–746

    Google Scholar 

  • García-Rodríguez S, Pozo MJ, Azcón-Aguilar C, Ferrol N (2005) Expression of a tomato sugar transporter is increased in leaves of mycorrhizal or Phytophthora parasitica-infected plants. Mycorrhiza 15:489–496

    PubMed  Google Scholar 

  • Gaude NS, Bortfeld DN, Lohse M, Krajinski F (2012) Arbuscule-containing and non-colonized cortical cells of mycorrhizal roots undergo extensive and specific reprogramming during arbuscular mycorrhizal development. Plant J 69(3):510–528

    PubMed  CAS  Google Scholar 

  • Ge L, Sun S, Chen A, Kapulnik Y, Xu G (2008) Tomato sugar transporter genes associated with mycorrhiza and phosphate. Plant Growth Regul 55:115–123

    CAS  Google Scholar 

  • Gianinazzi S, Gollotte A, Binet MN, van Tuinen D, Redecker D, Wipf D (2010) Agroecology: the key role of arbuscular mycorrhizas in ecosystem services. Mycorrhiza 20(8):519–530

    PubMed  Google Scholar 

  • Gianinazzi-Pearson V, Arnould C, Oufattole M, Arango M, Gianinazzi S (2000) Differential activation of H+-ATPase genes by an arbuscular mycorrhizal fungus in root cells of transgenic tobacco. Planta 211:609–613

    PubMed  CAS  Google Scholar 

  • Gianinazzi-Pearson V, Smith SE, Gianinazzi S, Smith FA (1991) Enzymatic studies on the metabolism of vesicular–arbuscular mycorrhizas. New Phytol 117(1):61–74

    CAS  Google Scholar 

  • Glassop D, Smith SE, Smith FWQ (2005) Cereal phosphate transporters associated with the mycorrhizal pathway of phosphate uptake into roots. Planta 222:688–698

    PubMed  CAS  Google Scholar 

  • Gobert A, Plassard C (2007) Kinetics of NO3 net fluxes in Pinus pinaster, Rhizopogon roseolus and their ectomycorrhizal association, as affected by the presence of NO3 and NH4 +. Plant Cell Environ 30:1309–1319

    PubMed  CAS  Google Scholar 

  • Gobert A, Plassard C (2002) Differential NO3 dependent patterns of NO3 uptake in Pinus pinaster, Rhizopogon roseolus and their ectomycorrhizal association. New Phytol 154:509–516

    CAS  Google Scholar 

  • Gomez SK, Javot H, Deewatthanawong P, Torres-Jerez I, Tang Y, Blancaflor EB, Udvardi MK, Harrison MJ (2009) Medicago truncatula and Glomus intraradices gene expression in cortical cells harboring arbuscules in the arbuscular mycorrhizal symbiosis. BMC Plant Biol 9:10

    PubMed  Google Scholar 

  • Gonzalez-Guerrero M, Azcon-Aguilar C, Mooney M, Valderas A, MacDiarmid CW, Eide DJ, Ferrol N (2005) Characterization of a Glomus intraradices gene encoding a putative Zn transporter of the cation diffusion facilitator family. Fungal Genet Biol 42:130–140

    PubMed  CAS  Google Scholar 

  • Grabov A (2007) Plant KT/KUP/HAK potassium transporters: single family—multiple functions. Ann Bot 99:1035–1041

    PubMed  CAS  Google Scholar 

  • Graham JH (2000) Assessing costs of arbuscular mycorrhizal symbiosis agroecosystems fungi. In: Podila GK, Douds DD Jr (eds) Current advances in mycorrhizae research. APS Press, St. Paul, pp 127–140

    Google Scholar 

  • Gray LE, Gerdemann JW (1973) Uptake of sulphur-35 by vesicular arbuscular mycorrhizae. Plant Soil 39:687–689

    CAS  Google Scholar 

  • Grünwald U, Guo W, Fischer K, Isayenkov S, Ludwig-Müller J, Hause B, Yan X, Küster H, Franken P (2009) Overlapping expression patterns and differential transcript levels of phosphate transporter genes in arbuscular mycorrhizal, Pi-fertilised and phytohormone-treated Medicago truncatula roots. Planta 229:1023–1034

    PubMed  Google Scholar 

  • Grunze N, Willmann M, Nehls U (2004) The impact of ectomycorrhiza formation on monosaccharide transporter gene expression in poplar roots. New Phytol 164:147–155

    CAS  Google Scholar 

  • Guescini M, Zeppa S, Pierleoni R, Sisti D, Stocchi L, Stocchi V (2007) The expression profile of the Tuber borchii nitrite reductase suggests its positive contribution to host plant nitrogen nutrition. Curr Genet 51:31–41

    PubMed  CAS  Google Scholar 

  • Guescini M, Pierleoni R, Palma F, Zeppa S, Vallorani L, Potenza L, Sacconi C, Giomaro G, Stocchi V (2003) Characterization of the Tuber borchii nitrate reductase gene and its role in ectomycorrhizae. Mol Gen Genom 269:807–816

    CAS  Google Scholar 

  • Guether M, Neuhäuser B, Balestrini R, Dynowski M, Ludewig U, Bonfante P (2009a) A Mycorrhizal-specific ammonium transporter from Lotus japonicus acquires nitrogen released by arbuscular mycorrhizal fungi. Plant Physiol 150:73–83

    PubMed  CAS  Google Scholar 

  • Guether M, Balestrini R, Hannah M, He J, Udvardi MK, Bonfante P (2009b) Genome-wide reprogramming of regulatory networks, transport, cell wall and membrane biogenesis during arbuscular mycorrhizal symbiosis in Lotus japonicus. New Phytol 182:200–212

    PubMed  CAS  Google Scholar 

  • Guidot A, Verner MC, Debaud JC, Marmeisse R (2005) Intraspecific variation in use of different organic nitrogen sources by the ectomycorrhizal fungus Hebeloma cylindrosporum. Mycorrhiza 15:167–177

    PubMed  CAS  Google Scholar 

  • Guo T, Zhang JL, Christie P, Li XL (2007) Pungency of spring onion as affected by inoculation with arbuscular mycorrhizal fungi and sulfur supply. J Plant Nutr 30:1023–1034

    CAS  Google Scholar 

  • Gupta AB, Sankararamakrishnan R (2009) Genome-wide analysis of major intrinsic proteins in the tree plant Populus trichocarpa: characterization of XIP subfamily of aquaporins from evolutionary perspective. BMC Plant Biol 9:134

    PubMed  Google Scholar 

  • Hahn M, Mendgen K (2001) Signal and nutrient exchange at biotrophic plant–fungus interfaces. Curr Opin Plant Biol 4:322–327

    PubMed  CAS  Google Scholar 

  • Hammer EC, Pallon J, Wallander H, Olsson PA (2011) Tit for tat? A mycorrhizal fungus accumulates phosphorus under low plant carbon availability. FEMS Microbiol Ecol 76:236–244

    PubMed  CAS  Google Scholar 

  • Haro R, Sainz L, Rubio F, Rodríguez-Navarro A (1999) Cloning of two genes encoding potassium transporters in Neurospora crassa and expression of the corresponding cDNAs in Saccharomyces cerevisiae. Mol Microbiol 31:511–520

    PubMed  CAS  Google Scholar 

  • Harrison MJ (2005) Signaling in the arbuscular mycorrhizal symbiosis. Annu Rev Microbiol 59:19–42

    PubMed  CAS  Google Scholar 

  • Harrison MJ, Dewbre GR, Liu JY (2002) A phosphate transporter from Medicago truncatula involved in the acquisition of phosphate released by arbuscular mycorrhizal fungi. Plant Cell 14:2413–2429

    PubMed  CAS  Google Scholar 

  • Harrison MJ (1996) A sugar transporter from Medicago truncatula: altered expression pattern in roots during vesicular–arbuscular (VA) mycorrhizal associations. Plant J 9:491–503

    PubMed  CAS  Google Scholar 

  • Harrison MJ, Van Buuren ML (1995) A phosphate transporter from the mycorrhizal fungus Glomus versiforme. Nature 378:626–629

    PubMed  CAS  Google Scholar 

  • Hatakeyama T, Ohmasa M (2004) Mycelial growth of strains of the genera Suillus and Boletinus in media with a wide range of concentrations of carbon and nitrogen sources. Mycoscience 45:169–176

    CAS  Google Scholar 

  • Hauser M, Narita V, Donhardt AM, Naider F, Becker JM (2001) Multiplicity and regulation of genes encoding peptide transporters in Saccharomyces cerevisiae. Mol Membr Biol 18:105–112

    PubMed  CAS  Google Scholar 

  • Helber N, Wippel K, Sauer N, Schaarschmidt S, Hause B, Requena N (2011) A versatile monosaccharide transporter that operates in the arbuscular mycorrhizal fungus Glomus sp. is crucial for the symbiotic relationship with plants. Plant Cell 23:3812–3823

    PubMed  CAS  Google Scholar 

  • Hendricks JJ, Mitchell RJ, Kuehn KA, Pecot SD, Sims SE (2006) Measuring external mycelia production of ectomycorrhizal fungi in the field: the soil matrix matters. New Phytol 171:179–186

    PubMed  CAS  Google Scholar 

  • Hildebrandt U, Schmelzer E, Bothe H (2002) Expression of nitrate transporter genes in tomato colonized by an arbuscular mycorrhizal fungus. Physiol Plant 115:125–136

    PubMed  CAS  Google Scholar 

  • Ho I, Trappe JM (1973) Translocation of 14C from Festuca plants to their endomycorrhizal fungi. Nature 224:30–31

    Google Scholar 

  • Hobbie EA (2006) Carbon allocation to ectomycorrhizal fungi correlates with below-ground allocation in culture studies. Ecology 87:563–569

    PubMed  Google Scholar 

  • Hodge A, Fitter AH (2010) Substantial nitrogen acquisition by arbuscular mycorrhizal fungi from organic material has implications for N cycling. Proc Natl Acad Sci U S A 107:13754–13759

    PubMed  CAS  Google Scholar 

  • Högberg MN, Högberg P (2002) Extramatrical ectomycorrhizal mycelium contributes one-third of microbial biomass and produces, together with associated roots, half the dissolved organic carbon in a forest soil. New Phytol 154:791–795

    Google Scholar 

  • Hogekamp C, Arndt D, Pereira PA, Becker JD, Hohnjec N, Kuster H (2011) Laser microdissection unravels cell-type-specific transcription in arbuscular mycorrhizal roots, including CAAT-Box transcription factor gene expression correlating with fungal contact and spread. Plant Physiol 157(4):2023–2043

    PubMed  CAS  Google Scholar 

  • Hohnjec N, Vieweg MF, Pühler A, Becker A, Küster H (2005) Overlaps in the transcriptional profiles of Medicago truncatula roots inoculated with two different glomus fungi provide insights into the genetic program activated during arbuscular mycorrhiza. Plant Physiol 137(4):1283–1301

    PubMed  CAS  Google Scholar 

  • Hohnjec N, Perlick AM, Pühler A, Küster H (2003) The Medicago truncatula sucrose synthase gene MtSucS1 is activated both in the infected region of root nodules and in the cortex of roots colonized by arbuscular mycorrhizal fungi. Mol Plant Microbe Interact 16(10):903–915

    PubMed  CAS  Google Scholar 

  • Huang CH, Peng J (2005) Evolutionary conservation and diversification of Rh family genes and proteins. Proc Natl Acad Sci U S A 102:15512–15517

    PubMed  CAS  Google Scholar 

  • Huang RS, Smith WK, Yost RS (1985) Influence of vesicular-arbuscular mycorrhiza on growth, water relations, and leaf orientation in Leucaena leucocephala (Lam.) de Wit. New Phytol 99:229–243

    Google Scholar 

  • Jan LY, Jan YN (1997) Cloned potassium channels from eukaryotes and prokaryotes. Annu Rev Neurosci 20:91–123

    PubMed  CAS  Google Scholar 

  • Jargeat P, Rekangalt D, Verner MC, Gay G, Debaud JC, Marmeisse R, Fraissinet-Tachet L (2003) Characterisation and expression analysis of a nitrate transporter and nitrite reductase genes, two members of a gene cluster for nitrate assimilation from the symbiotic basidiomycete Hebeloma cylindrosporum. Curr Genet 43:199–205

    PubMed  CAS  Google Scholar 

  • Jargeat P, Gay G, Debaud JC, Marmeisse R (2000) Transcription of a nitrate reductase gene isolated from the symbiotic basidiomycete fungus Hebeloma cylindrosporum does not require induction by nitrate. Mol Gen Genet 263:948–956

    PubMed  CAS  Google Scholar 

  • Javelle A, Morel M, Rodriguez-Pastrana BR, Botton B, André B, Marini AM, Brun A, Chalot M (2003) Molecular characterization, function and regulation of ammonium transporters (Amt) and ammonium-metabolizing enzymes (GS, NADP-GDH) in the ectomycorrhizal fungus Hebeloma cylindrosporum. Mol Microbiol 47:411–430

    PubMed  CAS  Google Scholar 

  • Javelle A, Rodriguez-Pastrana BR, Jacob C, Botton B, Brun A, André B, Marini AM, Chalot M (2001) Molecular characterization of two ammonium transporters from the ectomycorrhizal fungus Hebeloma cylindrosporum. FEBS Lett 505:393–398

    PubMed  CAS  Google Scholar 

  • Javot H, Penmetsa RV, Breuillin F, Bhattarai KK, Noar RD, Gomez SK, Zhang Q, Cook DR, Harrison MJ (2011) Medicago truncatula MtPT4 mutants reveal a role for nitrogen in the regulation of arbuscule degeneration in arbuscular mycorrhizal symbiosis. Plant J 68(6):954–965

    PubMed  CAS  Google Scholar 

  • Javot H, Penmetsa RV, Terzaghi N, Cook DR, Harrison MJ (2007a) A Medicago truncatula phosphate transporter indispensable for the arbuscular mycorrhizal symbiosis. Proc Natl Acad Sci U S A 104:1720–1725

    PubMed  CAS  Google Scholar 

  • Javot H, Pumplin N, Harrison MJ (2007b) Phosphate in the arbuscular mycorrhizal symbiosis: transport properties and regulatory roles. Plant Cell Environ 30:310–322

    PubMed  CAS  Google Scholar 

  • Jentschke G, Brandes B, Kuhn AJ, Schröder WH, Godbold DL (2001) Interdependence of phosphorus, nitrogen, potassium and magnesium translocation by the ectomycorrhizal fungus Paxillus involutus. New Phytol 149:327–338

    CAS  Google Scholar 

  • Jentschke G, Brandes B, Kuhn AJ, Schröder WH, Becker JS, Godbold DL (2000) The mycorrhizal fungus Paxillus involutus transports magnesium to Norway spruce seedlings. Evidence from stable isotope labeling. Plant Soil 220:243–246

    CAS  Google Scholar 

  • Johanson U, Gustavsson S (2002) A new subfamily of major intrinsic proteins in plants. Mol Biol Evol 19:456–461

    PubMed  CAS  Google Scholar 

  • Jones DT, Taylor WR, Thornton JM (1992) The rapid generation of mutation data matrices from protein sequences. Comput Appl Biosci 8:275–282

    Google Scholar 

  • Jongbloed RH, Clement JMAM, Borst-Pauwels GWFH (1991) Kinetics of NH4 + and K+ uptake by ectomycorrhizal fungi. Effect of NH4 + on K+ uptake. Physiol Plant 83:427–432

    CAS  Google Scholar 

  • Jongmans AG, Van Breemen N, Lundström U, Finlay RD, van Hees PAW, Giesler R, Melkerud PA, Olsson M, Srinivasan M, Unestam T (1997) Rock eating fungi. Nature 389:682–683

    CAS  Google Scholar 

  • Jordy MN, Azemar LS, Brun A, Botton B, Pargney J-C (1998) Cytolocalization of glycogen, starch, and other insoluble polysaccharides during ontogeny of Paxillus involutus⁄Betulapendula ectomycorrhizas. New Phytol 140:331–341

    CAS  Google Scholar 

  • Karandashov V, Nagy R, Wegmuller S, Amrhein N, Bucher M (2004) Evolutionary conservation of a phosphate transporter in the arbuscular mycorrhizal symbiosis. Proc Natl Acad Sci U S A 101:6285–6290

    PubMed  CAS  Google Scholar 

  • Ketchum KA, Joiner WJ, Sellers AJ, Kaczmarek LK, Goldstein SAN (1995) A new family of outwardly rectifying potassium channel proteins with two pore domains in tandem. Nature 376:690–695

    PubMed  CAS  Google Scholar 

  • Kiers ET, Kiers ET, Duhamel M, Beesetty Y, Mensah JA, Franken O, Verbruggen E, Fellbaum CR, Kowalchuk GA, Hart MM, Bago A, Palmer TM, West SA, Vandenkoornhuyse P, Jansa J, Bücking H (2011) Reciprocal rewards stabilize cooperation in the mycorrhizal symbiosis. Science 333:880–882

    PubMed  CAS  Google Scholar 

  • Kluge M, Mollenhauer D, Mollenhauer R (1991) Photosynthetic carbon assimilation in Geosiphon pyriforme (Kützing) F.v. Wettstein, an endosymbiotic association of fungus and cyanobacterium. Planta 185:311–315

    CAS  Google Scholar 

  • Ko CH, Gaber RF (1991) TRK1 and TRK2 encode structurally related K+ transporters in Saccharomyces cerevisiae. Mol Cell Biol 11:4266–4273

    PubMed  CAS  Google Scholar 

  • Kobae Y, Hata S (2010) Dynamics of periarbuscular membranes visualized with a fluorescent phosphate transporter in arbuscular mycorrhizal roots of rice. Plant Cell Physiol 51:341–353

    PubMed  CAS  Google Scholar 

  • Kobae Y, Tamura Y, Takai S, Banba M, Hata S (2010) Localized expression of arbuscular mycorrhiza-inducible ammonium transporters in soybean. Plant Cell Physiol 51(9):1411–1415

    PubMed  CAS  Google Scholar 

  • Koegel S, Ait Lahmidi N, Arnould C, Chatagnier O, Walder F, Ineichen K, Boller T, Wipf D, Wiemken A, Courty P-E (2013) The family of ammonium transporters (AMT) in Sorghum bicolor: two AMT members are induced locally, but not systemically in roots colonized by arbuscular mycorrhizal fungi. New Phyt doi:10.1111/nph.12199

  • Kosuta S, Hazledine S, Sun J, Miwa H, Morris RJ, Downie JA, Oldroyd GED (2008) Differential and chaotic calcium signatures in the symbiosis signaling pathway of legumes. Proc Natl Acad Sci U S A 15:9823–9828

    Google Scholar 

  • Krajinski F, Hause B, Gianinazzi-Pearson V, Franken P (2002) Mtha1, a plasma membrane H+-ATPase gene from Medicago truncatula, shows arbuscule-specific induced expression in mycorrhizal tissue. Plant Biol 4(6):754–761

    CAS  Google Scholar 

  • Krajinski F, Biela A, Schubert D, Gianinazzi-Pearson V, Kaldenhoff R, Franken P (2000) Arbuscular mycorrhiza development regulates the mRNA abundance of Mtaqp1 encoding a mercury-insensitive aquaporin of Medicago truncatula. Planta 211:85–90

    PubMed  CAS  Google Scholar 

  • Lambilliotte R, Cooke R, Samson D, Fizames C, Gaymard F, Plassard C, Tatry MV, Berger C, Laudie M, Legeai F, Karsenty E, Delseny M, Zimmermann S, Sentenac H (2004) Large-scale identification of genes in the fungus Hebeloma cylindrosporum paves the way to molecular analyses of ectomycorrhizal symbiosis. New Phytol 164:505–513

    CAS  Google Scholar 

  • Landeweert R, Hoffland E, Finlay RD, Kuyper TW, van Breemen N (2001) Linking plants to rocks: ectomycorrhizal fungi mobilize nutrients from minerals. Trends Ecol Evol 16(5):248–254

    PubMed  Google Scholar 

  • Larsen PE, Sreedasyam A, Trivedi G, Podila GK, Cseke LJ, Collart FR (2011) Using next generation transcriptome sequencing to predict an ectomycorrhizal metabolome. BMC Syst Biol 5:70

    PubMed  Google Scholar 

  • Le Quéré A, Wright DP, Söderström B, Tunlid A, Johansson T (2005) Global patterns of gene regulation associated with the development of ectomycorrhiza between birch (Betula pendula Roth.) and Paxilus involutus (Batsch) Fr. Mol Plant Microbe Interact 18(7):659–673

    PubMed  Google Scholar 

  • Lefebvre B, Furt F, Hartmann MA, Michaelson LV, Carde JP, Sargueil-Boiron F, Rossignol M, Napier JA, Cullimore J, Bessoule JJ, Mongrand S (2007) Characterization of lipid rafts from Medicago truncatula root plasma membranes: a proteomic study reveals the presence of a raft-associated redox system. Plant Physiol 144(1):402–418

    PubMed  CAS  Google Scholar 

  • Leggewie G, Kolbe A, Lemoine R, Roessner U, Lytovchenko A, Zuther E, Kehr J, Frommer WB, Riesmeier JW, Willmitzer L, Fernie AR (2003) Overexpression of the sucrose transporter SoSUT1 in potato results in alterations in leaf carbon partitioning and in tuber metabolism but has little impact on tuber morphology. Planta 217:158–167

    PubMed  CAS  Google Scholar 

  • Leggewie G, Wilmitzer L, Riesmier JW (1997) Two cDNAs from potato are able to complement a phosphate uptake-deficient yeast mutant: identification of phosphate transporters from higher plants. Plant Cell 9:381–392

    PubMed  CAS  Google Scholar 

  • Lehto T, Zwiazek JJ (2010) Ectomycorrhizas and water relations of trees: a review. Mycorrhiza 21:71–90

    PubMed  Google Scholar 

  • Leigh RA, Jones RGW (1984) A hypothesis relating critical potassium concentrations for growth to the distribution and function of this ion in the plant cell. New Phytol 97:1–13

    CAS  Google Scholar 

  • Leustek T (1996) Molecular genetics of sulfate assimilation in plants. Physiol Plant 97:411–419

    CAS  Google Scholar 

  • Lewandowska M, Sirko A (2008) Recent advances in understanding plant response to sulfur-deficiency stress. Acta Biochim Pol 55:457–471

    PubMed  CAS  Google Scholar 

  • Li J, Bao S, Zhang Y, Ma X, Mishra-Knyrim M, Sun J, Sa G, Shen X, Polle A, Chen S (2012) Paxillus involutus strains MAJ and NAU mediate K+/Na+ homeostasis in ectomycorrhizal Populus × canescens under NaCl stress. Plant Physiol 159:1771–1786. doi:10.1104/pp.112.195370

    PubMed  CAS  Google Scholar 

  • Li XL, Christie P (2001) Changes in soil solution Zn and pH uptake of Zn by arbuscular mycorrhizal red clover in Zn-contaminated soil. Chemosphere 42:201–207

    PubMed  CAS  Google Scholar 

  • Li XL, George E, Marschner H (1991a) Extension of the phosphorus depletion zone in VA-mycorrhizal white clover in calcareous soil. Plant Soil 136:41–48

    Google Scholar 

  • Li XL, Marschner H, George E (1991b) Acquisition of phosphorus and copper by VA-mycorrhizal hyphae and root-to-shoot transport in white clover. Plant Soil 136:49–57

    CAS  Google Scholar 

  • Liu C, Muchhal US, Uthappa M, Kononowicz AK, Raghothama KG (1998a) Tomato phosphate transporter genes are differentially regulated in plant tissues by phosphorus. Plant Physiol 116:91–99

    PubMed  CAS  Google Scholar 

  • Liu H, Trieu AT, Blaylock LA, Harrison M (1998b) Cloning and characterization of two phosphate transporters from Medicago truncatula roots: regulation in response to phosphate and to colonization by arbuscular mycorrhizal (AM) fungi. Mol Plant Microbe Interact 11(1):14–22

    PubMed  CAS  Google Scholar 

  • Loewe A, Einig W, Shi L, Dizengremel P, Hampp R (2000) Mycorrhiza formation and elevated CO2 both increase the capacity for sucrose synthesis in source leaves of spruce and aspen. New Phytol 145:565–574

    CAS  Google Scholar 

  • Lopez-Pedrosa A, Gonzalez-Guerrero M, Valderas A, Azcon-Aguilar C, Ferrol N (2006) GintAMT1 encodes a functional high-affinity ammonium transporter that is expressed in the extraradical mycelium of Glomus intraradices. Fungal Genet Biol 43(2):102–110

    PubMed  CAS  Google Scholar 

  • Loth-Pereda V, Orsini E, Courty PE, Lota F, Kohler A, Diss L, Blaudez D, Chalot M, Nehls U, Bucher M, Martin F (2011) Structure and expression profile of the phosphate Pht1 transporter gene family in mycorrhizal Populus trichocarpa. Plant Physiol 156:2141–2154

    PubMed  CAS  Google Scholar 

  • Lucic E, Fourrey C, Kohler A, Martin F, Chalot M, Brun-Jacob A (2008) A gene repertoire for nitrogen transporters in Laccaria bicolor. New Phytol 180:343–364

    PubMed  CAS  Google Scholar 

  • Maeda D, Ashida K, Iguchi K, Chechetka SA, Hijikata A, Okusako Y, Deguchi Y, Izui K, Hata S (2006) Knockdown of an arbuscular mycorrhiza-inducible phosphate transporter gene of Lotus japonicus suppresses mutualistic symbiosis. Plant Cell Physiol 47:807–817

    PubMed  CAS  Google Scholar 

  • Malajczuk N, Cromack K Jr (1982) Accumulation of calcium oxalate in the mantle of ectomycorrhizal roots of Pinus radiata and Eucalyptus marginata. New Phytol 92:527–531

    CAS  Google Scholar 

  • Maldonado-Mendoza IE, Dewbre GR, Harrison MJ (2001) A phosphate transporter gene from the extra-radical mycelium of an arbuscular mycorrhizal fungus Glomus intraradices is regulated in response to phosphate in the environment. Mol Plant Microbe Interact 14(10):1140–1148

    PubMed  CAS  Google Scholar 

  • Manjunath A, Habte M (1988) Development of vesicular-arbuscular mycorrhizal infection and the uptake of immobile nutrients in Leucaena leucocephala. Plant Soil 106:97–103

    Google Scholar 

  • Marjanovic Z, Uehlein N, Kaldenhoff R, Zwiazek JJ, Weis M, Hampp R, Nehls U (2005a) Aquaporins in poplar: what a difference a symbiont makes! Planta 222:258–268

    PubMed  CAS  Google Scholar 

  • Marjanovic Z, Nehls U, Hampp R (2005b) Mycorrhiza formation enhanced adaptative response of hybrid poplar to drought. Ann NY Acad Sci 1048:496–499

    PubMed  CAS  Google Scholar 

  • Marschner H (1995) Mineral nutrition of higher plants, 2nd edn. Academic, London

    Google Scholar 

  • Marschner H, Dell B (1994) Nutrient uptake in mycorrhizal symbiosis. Plant Soil 159(1):89–102

    CAS  Google Scholar 

  • Martin F, Kohler A, Murat C, Balestrini R, Coutinho PM, Jaillon O, Montanini B, Morin E, Noel B, Percudani R, Porcel B, Rubini A, Amicucci A, Amselem J, Anthouard V, Arcioni S, Artiguenave F, Aury JM, Ballario P, Bolchi A, Brenna A, Brun A, Buee M, Cantarel B, Chevalier G, Couloux A, Da Silva C, Denoeud F, Duplessis S, Ghignone S, Hilselberger B, Iotti M, Marcais B, Mello A, Miranda M, Pacioni G, Quesneville H, Riccioni C, Ruotolo R, Splivallo R, Stocchi V, Tisserant E, Viscomi AR, Zambonelli A, Zampieri E, Henrissat B, Lebrun MH, Paolocci F, Bonfante P, Ottonello S, Wincker P (2010) Périgord black truffle genome uncovers evolutionary origins and mechanisms of symbiosis. Nature 464:1033–1038

    PubMed  CAS  Google Scholar 

  • Martin F, Aerts A, Ahrén D, Brun A, Duchaussoy F, Kohler A, Lindquist E, Salamov A, Shapiro HJ, Wuyts J, Blaudez D, Buée M, Brokstein P, Canbäck B, Cohen D, Courty PE, Coutinho PM, Danchin EGJ, Delaruelle C, Detter JC, Deveau A, DiFazio S, Duplessis S, Fraissinet-Tachet L, Lucic E, Frey-Klett P, Fourrey C, Feussner I, Gay G, Gibon J, Grimwood J, Hoegger P, Jain P, Kilaru S, Labbé J, Lin Y, Le Tacon F, Marmeisse R, Melayah D, Montanini B, Muratet M, Nehls U, Niculita-Hirzel H, Oudot-Le Secq MP, Pereda VP, Peter M, Quesneville H, Rajashekar B, Reich M, Rouhier N, Schmutz J, Yin T, Chalot M, Henrissat B, Kües U, Lucas S, Van de Peer Y, Podila G, Polle A, Pukkila PJ, Richardson PM, Rouzé P, Sanders I, Stajich JE, Tunlid A, Tuskan G, Grigoriev I (2008) The genome sequence of the basidiomycete fungus Laccaria bicolor provides insights into the mycorrhizal symbiosis. Nature 452:88–92

    PubMed  CAS  Google Scholar 

  • Martinez P, Persson B (1998) Identification, cloning and charaterization of a derepressible Na+-coupled phosphate transporter in Saccharomyces cerevisiae. Mol Gen Genet 258:628–638

    PubMed  CAS  Google Scholar 

  • Martino E, Murat C, Vallino M, Bena A, Perotto S, Spanu P (2007) Imaging mycorrhizal fungal transformants that express EGFP during ericoid endosymbiosis. Curr Genet 52:65–75

    PubMed  CAS  Google Scholar 

  • Maruyama-Nakashita A, Inoue E, Watanabe-Takahashi A, Yarnaya T, Takahashi H (2003) Transcriptome profiling of sulfur-responsive genes in Arabidopsis reveals global effects of sulfur nutrition on multiple metabolic pathways. Plant Physiol 132:597–605

    PubMed  CAS  Google Scholar 

  • Marzluf GA (1997) Genetic regulation of nitrogen metabolism in the fungi. Microbiol Mol Biol Rev 61:17–32

    PubMed  CAS  Google Scholar 

  • Maurel C, Plassard C (2011) Aquaporins: for more than water at the plant–fungus interface? New Phytol 190:815–817

    PubMed  CAS  Google Scholar 

  • Maurel C, Santoni V, Luu D-T, Wudick MM, Verdoucq L (2009) The cellular dynamics of plant aquaporin expressions and functions. Curr Opin Plant Biol 12:690–698

    PubMed  CAS  Google Scholar 

  • Maurel C, Verdoucq L, Luu DT, Santoni V (2008) Plant aquaporins: membrane channels with multiple integrated functions. Annu Rev Plant Biol 59:595–624

    PubMed  CAS  Google Scholar 

  • Melin E, Nilsson H (1950) Transfer of radioactive phosphorus to pine seedlings by means of mycorrhizal hyphae. Physiol Plant 3:88–92

    Google Scholar 

  • Montanini B, Viscomi AR, Bolchi A, Martin Y, Siverio JM, Balestrini R, Bonfante P, Ottonello S (2006) Functional properties and differential mode of regulation of the nitrate transporter from a plant symbiotic ascomycete. Biochem J 394:125–134

    PubMed  CAS  Google Scholar 

  • Montanini B, Moretto N, Soragni E, Percudani R, Ottonello S (2002) A high-affinity ammonium transporter from the mycorrhizal ascomycete Tuber borchii. Fungal Genet Biol 36(1):22–34

    PubMed  CAS  Google Scholar 

  • Morel M, Jacob C, Kohler A, Johansson T, Martin F, Chalot M, Brun A (2005) Identification of genes differentially expressed in extraradical mycelium and ectomycorrhizal roots during Paxillus involutusBetula pendula ectomycorrhizal symbiosis. Appl Environ Microbiol 71:382–391

    PubMed  CAS  Google Scholar 

  • Müller T, Avolio M, Olivi M, Benjdia M, Rikirsch E, Kasaras A, Fitz M, Chalot M, Wipf D (2007) Nitrogen transport in the ectomycorrhiza association: the Hebeloma cylindrosporumPinus pinaster model. Phytochemistry 68:41–51

    PubMed  Google Scholar 

  • Nagy R, Drissner D, Amrhein N, Jakobsen I, Bucher M (2009) Mycorrhizal phosphate uptake pathway in tomato is phosphorus-repressible and transcriptionally regulated. New Phytol 181:950–959

    PubMed  CAS  Google Scholar 

  • Nagy F, Karandashov V, Chague W, Kalinkevich K, Tamasloukht M, Xu GH, Jakobsen I, Levy AA, Amrhein N, Bucher M (2005) The characterization of novel mycorrhiza-specific phosphate transporters from Lycopersicon esculentum and Solanum tuberosum uncovers functional redundancy in symbiotic phosphate transport in solanaceous species. Plant J 42:236–250

    PubMed  CAS  Google Scholar 

  • Nehls U, Göhringer F, Wittulsky S, Dietz S (2010) Fungal carbohydrate support in the ectomycorrhizal symbiosis: a review. Plant Biol 12:292–301

    PubMed  CAS  Google Scholar 

  • Nehls U, Grunze N, Willmann M, Reich M, Küster H (2007) Sugar for my honey: carbohydrate partitioning in ectomycorrhizal symbiosis. Phytochemistry 86:82–91

    Google Scholar 

  • Nehls U (2004) Carbohydrates and nitrogen: nutrients and signals in ectomycorrhizas. In: Varma A, Abbott L, Werner D, Hampp R (eds) Plant surface microbiology. Springer, Berlin, pp 373–392

    Google Scholar 

  • Nehls U, Wiese J, Hampp R (2000) Cloning of a Picea abies monosaccharide transporter gene and expression—analysis in plant tissues and ectomycorrhizas. Trees 14:334–338

    Google Scholar 

  • Nehls U, Kleber R, Wiese J, Hampp R (1999) Isolation and characterization of a general amino acid permease from the ectomycorrhizal fungus Amanita muscaria. New Phytol 144:343–349

    CAS  Google Scholar 

  • Nehls U, Wiese J, Guttenberger M, Hampp R (1998) Carbon allocation in ectomycorrhizas: identification and expression analysis of an Amanita muscaria monosaccharide transporter. Mol Plant Microbe Interact 11:167–176

    PubMed  CAS  Google Scholar 

  • Nikiforova VJ, Kopka J, Tolstikov V, Fiehn O, Hopkins L, Hawkesford MJ, Hesse H, Hoefgen R (2005) Systems rebalancing of metabolism in response to sulfur deprivation, as revealed by metabolome analysis of Arabidopsis plants. Plant Physiol 138:304–318

    PubMed  CAS  Google Scholar 

  • Nilsson LO, Giesler R, Baath E, Wallander H (2005) Growth and biomass of mycorrhizal mycelia in coniferous forests along short natural nutrient gradients. New Phytol 165:613–622

    PubMed  Google Scholar 

  • Nilsson LO, Wallander H (2003) Production of external mycelium by ectomycorrhizal fungi in a Norway spruce forest was reduced in response to nitrogen fertilization. New Phytol 158:409–416

    Google Scholar 

  • Nylund JE, Wallander H (1989) Effects of ectomycorrhiza on host growth and carbon balance in a semi-hydroponic cultivation system. New Phytol 112:389–398

    Google Scholar 

  • Olsson PA, Hammer EC, Pallon J, van Aarle IM, Wallander H (2011) Elemental composition in vesicles of an arbuscular mycorrhizal fungus, as revealed by PIXE analysis. Fungal Biol 115:643–648

    PubMed  CAS  Google Scholar 

  • Olsson PA, Hammer EC, Wallander H, Pallon J (2008) Phosphorus availability influences elemental uptake in the mycorrhizal fungus Glomus intraradices, as revealed by particle-induced X-ray emission analysis. Appl Env Microbiol 74:4144–4148

    CAS  Google Scholar 

  • Olsson PA, Hansson MC, Burleigh SH (2006) Effect of P availability on temporal dynamics of carbon allocation and Glomus intraradices high-affinity P transporter gene induction in arbuscular mycorrhiza. Appl Environ Microbiol 72:4115–4120

    PubMed  CAS  Google Scholar 

  • Ouziad F, Hildebrandt U, Schmelzer E, Bothe H (2005) Differential gene expressions in arbuscular mycorrhizal-colonized tomato grown under heavy metal stress. J Plant Physiol 162:634–649

    PubMed  CAS  Google Scholar 

  • Papazian DM, Schwarz TL, Tempel BL, Jan YN, Jan LY (1987) Cloning of the genomic and complementary DNA from Shaker, a putative potassium channel gene from Drosophila. Science 237:749–753

    PubMed  CAS  Google Scholar 

  • Parrent JL, Ty J, Vasaitis R, Taylor AFS (2009) Friend or foe? Evolutionary history of glycoside hydrolase family 32 genes encoding for sucrolytic activity in fungi and its implications for plant-fungal symbioses. BMC Evol Biol 9:148

    PubMed  Google Scholar 

  • Paulsen IT, Skurray RA (1994) The POT family of transport proteins. Trends Biochem Sci 19(10):404

    PubMed  CAS  Google Scholar 

  • Pérez-Tienda J, Testillano PS, Balestrini R, Fiorilli V, Azcón-Aguilar C, Ferrol N (2011) GintAMT2, a new member of the ammonium transporter family in the arbuscular mycorrhizal fungus Glomus intraradices. Fungal Genet Biol 48(11):1044–1055

    PubMed  Google Scholar 

  • Persson BL, Lagerstedt JO, Pratt JR, Pattison-Granberg J, Lundh K, Shokrollahzadeh K, Lundh F (2003) Regulation of phosphate acquisition in Saccharomyces cerevisiae. Curr Genet 43:225–244

    PubMed  CAS  Google Scholar 

  • Pfeffer PE, Douds DDJ, Bécard G, Shachar-Hill Y (1999) Carbon uptake and the metabolism and transport of lipids in an arbuscular mycorrhiza. Plant Physiol 120(2):587–598

    PubMed  CAS  Google Scholar 

  • Plassard C, Bonafos B, Touraine B (2002) Differential effects of mineral and oragnic N, and of ectomycorrhizal infection by Hebeloma cylindrosporum on growth and N utilization in Pinus pinaster. Plant Cell Env 23:1195–1205

    Google Scholar 

  • Plett JM, Martin F (2011) Blurred boundaries: lifestyle lessons from ectomycorrhizal fungal genomes. Trends Genet 27:14–22

    PubMed  CAS  Google Scholar 

  • Polidori E, Ceccaroli P, Saltarelli R, Guescini M, Menotta M, Agostini D, Palma F, Stocchi V (2007) Hexose uptake in the plant symbiotic ascomycete Tuber borchii Vittadini: biochemical features and expression pattern of the transporter TBHXT1. Fungal Genet Biol 44:187–198

    PubMed  CAS  Google Scholar 

  • Popper Z, Michel G, Herve C, Domozych D, Willats WGT, Tuohy MG, Kloareg B, Stengel DB (2011) Evolution and diversity of plant cell walls: from algae to flowering plants. Annu Rev Plant Biol 62:567–590

    PubMed  CAS  Google Scholar 

  • Porcel R, Aroca R, Azcon R, Ruiz-Lozano JM (2006) PIP aquaporin gene expression in arbuscular mycorrhizal Glycine max and Lactuca sativa plants in relation to drought stress tolerance. Plant Mol Biol 60:389–404

    PubMed  CAS  Google Scholar 

  • Porcel R, Gomez M, Kaldenhoff R, Ruiz-Lozano JM (2005) Impairment of NtAQP1 gene expression in tobacco plants does not affect root colonisation pattern by arbuscular mycorrhizal fungi but decreases their symbiotic efficiency under drought. Mycorrhiza 15:417–423

    PubMed  CAS  Google Scholar 

  • Porras-Soriano A, Soriano-Martìn ML, Porras-Piedra A, Azcón R (2009) Arbuscular mycorrhizal fungi increased growth, nutrient uptake and tolerance to salinity in olive trees under nursery conditions. J Plant Physiol 166:1350–1359

    PubMed  CAS  Google Scholar 

  • Poulsen KH, Nagy R, Gao LL, Smith SE, Bucher M, Smith FA, Jakobsen I (2005) Physiological and molecular evidence for Pi uptake via the symbiotic pathway in a reduced mycorrhizal colonization mutant in tomato associated with a compatible fungus. New Phytol 168:445–453

    PubMed  CAS  Google Scholar 

  • Pumplin N, Zhang X, Noar RD, Harrison MJ (2012) Polar localization of a symbiosis-specific phosphate transporter is mediated by a transient reorientation of secretion. Proc Natl Acad Sci U S A 109:E665–E672. doi:10.1073/pnas.1110215109

    PubMed  CAS  Google Scholar 

  • Pumplin N, Harrison MJ (2009) Live-cell imaging reveals periarbuscular membrane domains and organelle location in Medicago truncatula roots during arbuscular mycorrhizal symbiosis. Plant Physiol 151:809–819

    PubMed  CAS  Google Scholar 

  • Ramos AC, Façanha AR, Palma LM, Okorokov LA, Cruz ZMA, Silva AG, Siqueira AF, Bertolazi AA, Canton GC, Melo J, Santos WO, Schimitberger VMB, Okorokova-Façanha AL (2011a) An outlook on ion signaling and ionome of mycorrhizal symbiosis. Braz J Plant Physiol 23:79–89

    CAS  Google Scholar 

  • Ramos J, Ariño J, Sychrová H (2011b) Alkali-metal–cation influx and efflux systems in nonconventional yeast species. FEMS Microbiol Lett 317:1–8

    PubMed  CAS  Google Scholar 

  • Ramos AC, Lima PT, Dias PN, Catarina M, Kasuya M, Feijó JA (2009) A pH signaling mechanism involved in the spatial distribution of calcium and anion fluxes in ectomycorrhizal roots. New Phytol 181:448–462

    PubMed  CAS  Google Scholar 

  • Rangel-Castro JI, Danell E, Taylor F (2002) Use of different nitrogen sources by the edible ectomycorrhizal mushroom Cantharellus cibarius. Mycorrhiza 12:131–137

    PubMed  CAS  Google Scholar 

  • Rausch C, Daram P, Brunner S, Jansa J, Laloi M, Leggewie G, Amrhein N, Bucher M (2001) A phosphate transporter expressed in arbuscule-containing cells in potato. Nature 414:462–466

    PubMed  CAS  Google Scholar 

  • Ravnskov S, Wu Y, Graham JH (2003) Arbuscular mycorrhizal fungi differentially affect expression of genes coding for sucrose synthases in maize roots. New Phytol 157(3):539–545

    CAS  Google Scholar 

  • Read DJ, Perez-Moreno J (2003) Mycorrhizas and nutrient cycling in ecosystems—a journey towards relevance? New Phytol 157:475–492

    Google Scholar 

  • Rhodes LH, Gerdemann JW (1978) Hyphal translocation and uptake of sulfur by vesicular–arbuscular mycorrhizae of onion. Soil Biol Biochem 10:355–360

    CAS  Google Scholar 

  • Roberts DM, Tyerman SD (2002) Voltage-dependent cation channels permeable to NH4 +, K+, and Ca2+ in the symbiosome membrane of the model legume Lotus japonicus. Plant Physiol 128:370–378

    PubMed  CAS  Google Scholar 

  • Rodrìguez-Navarro A (2000) Potassium transport in fungi and plants. Biochim Biophys Acta 1469:1–30

    PubMed  Google Scholar 

  • Roitsch T, Gonzalez MC (2004) Function and regulation of plant invertases: sweet sensations. Trends Plant Sci 9:606–613

    PubMed  CAS  Google Scholar 

  • Roitsch T, Balibrea ME, Hofmann M, Proels R, Sinha AK (2003) Extracellular invertase: key metabolic enzyme and PR protein. J Exp Bot 54:513–524

    PubMed  CAS  Google Scholar 

  • Roussel H, Bruns S, Gianinazzi-Pearson V, Hahlbrock K, Franken P (1997) Induction of a membrane intrinsic protein-encoding mRNA in arbuscular mycorrhiza and elicitor-stimulated cell suspension cultures of parsley. Plant Sci 126:203–210

    CAS  Google Scholar 

  • Rubio V, Linhares F, Solano R, Martin AC, Iglesias J, Leyva A, Paz-Ares J (2001) A conserved MYB transcription factor involved in phosphate starvation signaling both in vascular plants and in unicellular algae. Genes Dev 15:2122–2133

    PubMed  CAS  Google Scholar 

  • Ruiz-Lozano JM, del Mar AM, Bárzana G, Vernieri P, Aroca R (2009) Exogenous ABA accentuates the differences in root hydraulic properties between mycorrhizal and non mycorrhizal maize plants through regulation of PIP aquaporins. Plant Mol Biol 70:565–579

    PubMed  CAS  Google Scholar 

  • Ruzicka DR, Barrios-Masias PH, Jackson LE, Schachtman DP (2012) Transcriptomic and metabolic responses of mycorrhizal roots to nitrogen patches under field conditions. Plant Soil 350:145–162

    CAS  Google Scholar 

  • Rygiewicz PT, Bledsoe CS (1984) Mycorrhizal effects on potassium fluxes by northwest coniferous seedlings. Plant Physiol 76:918–923

    PubMed  CAS  Google Scholar 

  • Saier MH Jr, Beatty JT, Goffeau A, Harley KT, Heijne WH, Huang SC, Jack DL, Jähn PS, Lew K, Liu J, Pao SS, Paulsen IT, Tseng TT, Virk PS (1999) The major facilitator superfamily. J Mol Microbiol Biotechnol 1:257–279

    PubMed  CAS  Google Scholar 

  • Salzer P, Hager A (1993) Characterization of wall-bound invertase isoforms of Picea abies cells and regulation by ectomycorrhizal fungi. Physiol Plant 88:52–59

    CAS  Google Scholar 

  • Salzer P, Hager A (1991) Sucrose utilization of the ectomycorrhizal fungi Amantia muscaria and Hebeloma rustuliniforme depends on the cell-wall bound invertase activity of their host Picea abies. Bot Acta 104:439–445

    CAS  Google Scholar 

  • Sawers RJH, Yang S-Y, Gutjahr C, Paszkowsky U (2008) The molecular components of nutrient exchange in arbuscular mycorrhizal interactions. In: Siddiqui ZA, Sayeed M, Futai K (eds) Mycorrhizae: sustainable agriculture and forestry. Springer Science-Business Media BV, Dordrecht, pp 37–59

  • Schaarschmidt S, González M-C, Roitsch T, Strack D, Sonnewald U, Hause B (2007a) Regulation of arbuscular mycorrhization by carbon. The symbiotic interaction cannot be improved by increased carbon availability accomplished by root-specifically enhanced invertase activity. Plant Physiol 143:1827–1840

    PubMed  CAS  Google Scholar 

  • Schaarschmidt S, Kopka J, Ludwig-Müller J, Hause B (2007b) Regulation of arbuscular mycorrhization by apoplastic invertases: enhanced invertase activity in the leaf apoplast affects the symbiotic interaction. Plant J 51:390–405

    PubMed  CAS  Google Scholar 

  • Schaarschmidt S, Roitsch T, Hause B (2006) Arbuscular mycorrhiza induces gene expression of the apoplastic invertase LIN6 in tomato (Lycopersicon esculentum) roots. J Exp Bot 57(15):4015–4023

    PubMed  CAS  Google Scholar 

  • Schaeffer C, Wallenda T, Guttenberger M, Hampp R (1995) Acid invertase in mycorrhizal and non-mycorrhizal roots of Norway spruce (Picea abies [L.] Karst.) seedlings. New Phytol 129:417–424

    CAS  Google Scholar 

  • Scherer HW (2001) Sulphur in crop production. Eur J Agron 14:81–111

    CAS  Google Scholar 

  • Schliemann W, Ammer C, Strack D (2008) Metabolite profiling of mycorrhizal roots of Medicago truncatula. Phytochemistry 69(1):112–146

    PubMed  CAS  Google Scholar 

  • Schubert A, Allara P, Morte A (2004) Cleavage of sucrose in roots of soybean (Glycine max) colonized by an arbuscular mycorrhizal fungus. New Phytol 161(2):495–501

    CAS  Google Scholar 

  • Schünmann PHD, Richardson AE, Vickers CE, Delhaize E (2004) Promoter analysis of the barley Pht1;1 phosphate transporter gene identifies regions controlling root expression and responsiveness to phosphate deprivation. Plant Physiol 136:4205–4214

    PubMed  Google Scholar 

  • Schüßler A, Martin H, Cohen D, Fitz M, Wipf D (2007) Arbuscular mycorrhiza—studies on the Geosiphon symbiosis lead to the characterization of the first Glomeromycotan sugar transporter. Plant Signal Behav 2(5):431–434

    PubMed  Google Scholar 

  • Schűßler A, Martin H, Cohen D, Fitz M, Wipf D (2006) Characterization of a carbohydrate transporter from symbiotic glomeromycotan fungi. Nature 444:933–936

    PubMed  Google Scholar 

  • Schűßler A (2002) Molecular phylogeny, taxonomy, and evolution of Geosiphon pyriformis and arbuscular mycorrhizal fungi. Plant Soil 244:75–83

    Google Scholar 

  • Selle A, Willmann M, Grunze N, Gessler A, Weiss M, Nehls U (2005) The high-affinity poplar ammonium importer PttAMT1.2 and its role in ectomycorrhizal symbiosis. New Phytol 168:697–706

    PubMed  CAS  Google Scholar 

  • Selosse M-A, Richard F, He X, Simard SW (2006) Mycorrhizal networks: des liaisons dangereuses? Trends Ecol Evol 21:621–628

    PubMed  Google Scholar 

  • Sentenac H, Bonneaud N, Minet M, Lacroute F, Salmon JM, Gaymard F, Grignon C (1992) Cloning and expression in yeast of a plant potassium ion transport system. Science 256:663–665

    PubMed  CAS  Google Scholar 

  • Shachar-Hill Y, Pfeffer PE, Douds D, Osman SF, Doner LW, Ratcliffe RG (1995) Partitioning of intermediary carbon metabolism in vesicular–arbuscular mycorrhizal leek. Plant Physiol 108(1):7–15

    PubMed  CAS  Google Scholar 

  • Smith SE, Jakobsen I, Grønlund M, Smith FA (2011) Roles of arbuscular mycorrhizas in plant phosphorus nutrition: interactions between pathways of phosphorus uptake in arbuscular mycorrhizal roots have important implications for understanding and manipulating plant phosphorus acquisition. Plant Physiol 156:1050–1057

    PubMed  CAS  Google Scholar 

  • Smith SE, Smith FA (2011) Roles of arbuscular mycorrhizas in plant nutrition and growth: new paradigms from cellular to ecosystem scales. Annu Rev Plant Biol 62:227–250

    PubMed  CAS  Google Scholar 

  • Smith SE, Facelli E, Pope S, Smith FA (2010) Plant performance in stressful environments: interpreting new and established knowledge of the roles of arbuscular mycorrhizas. Plant Soil 326:3–20

    CAS  Google Scholar 

  • Smith SE, Read DJ (2008) Mycorrhizal symbiosis, 3rd edn. Academic, London

    Google Scholar 

  • Smith SE, Smith FA, Jakobsen I (2004) Functional diversity in arbuscular mycorrhizal (AM) symbioses: the contribution of the mycorrhizal P uptake pathway is not correlated with mycorrhizal responses in growth or total P uptake. New Phytol 162:511–524

    Google Scholar 

  • Smith SE, Smith FA, Jakobsen I (2003) Mycorrhizal fungi can dominate phosphate supply to plants irrespective of growth responses. Plant Physiol 133:16–20

    PubMed  CAS  Google Scholar 

  • Smith SE, Dickson S, Smith FA (2001) Nutrient transfer in arbuscular mycorrhizas: how are fungal and plant processes integrated? Austr J Plant Physiol 28(7):685–696

    Google Scholar 

  • Smith SE, Gianinazzi-Pearson V, Koide R, Cairney JWG (1994) Nutrient transport in mycorrhizas: structure, physiology and consequences for efficiency of the symbiosis. Plant Soil 159:103–113

    CAS  Google Scholar 

  • Solaiman Z, Saito M (1997) Use of sugars by intraradical hyphae of arbuscular mycorrhizal fungi revealed by radiorespirometry. New Phytol 136(3):533–538

    CAS  Google Scholar 

  • Stülten CH, Kong FX, Hampp R (1995) Isolation and regeneration of protoplasts from the ectomycorrhizal ascomycete Cenococcum geophilum Fr. Mycorrhiza 5:259–266

    Google Scholar 

  • Takahashi H, Kopriva S, Giordano M, Saito K, Hell R (2011) Sulfur assimilation in photosynthetic organisms: molecular functions and regulations of transporters and assimilatory enzymes. Annu Rev Plant Biol 62:157–184

    PubMed  CAS  Google Scholar 

  • Tamura K, Peterson D, Peterson N, Stecher G, Nei M, Kumar S (2011) MEGA5: Molecular Evolutionary Genetics Analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol Biol Evol doi:10.1093/molbev/msr121

  • Tatry MV, El Kassis E, Lambilliotte R, Corratgé C, van Aarle I, Amenc LK, Alary R, Zimmermann S, Sentenac H, Plassard C (2009) Two differentially regulated phosphate transporters from the symbiotic fungus Hebeloma cylindrosporum and phosphorus acquisition by ectomycorrhizal Pinus pinaster. Plant J 57:1092–1102

    PubMed  CAS  Google Scholar 

  • Tejeda-Sartorius M, de la Vega OM, Délano-Frier JP (2008) Jasmonic acid influences mycorrhizal colonization in tomato plants by modifying the expression of genes involved in carbohydrate partitioning. Physiol Plant 133(2):339–353

    PubMed  CAS  Google Scholar 

  • Tian CB, Kasiborski KR, Lammers PJ, Bucking H, Shachar-Hill Y (2010) Regulation of the nitrogen transfer pathway in the arbuscular mycorrhizal symbiosis: gene characterization and the coordination of expression with nitrogen flux. Plant Physiol 153:1175–1187

    PubMed  CAS  Google Scholar 

  • Tisserant E, Kohler A, Dozolme-Seddas P, Balestrini R, Benabdellah K, Colard A, Croll D, Da Silva C, Gomez SK, Koul R, Ferrol N, Fiorilli V, Formey D, Franken P, Helber N, Hijri M, Lanfranco L, Lindquist E, Liu Y, Malbreil M, Morin E, Poulain J, Shapiro H, van Tuinen D, Waschke A, Azcón-Aguilar C, Bécard G, Bonfante P, Harrison MJ, Küster H, Lammers P, Paszkowski U, Requena N, Rensing SA, Roux C, Sanders IR, Shachar-Hill Y, Tuskan G, Young JP, Gianinazzi-Pearson V, Martin F (2012) The transcriptome of the arbuscular mycorrhizal fungus Glomus intraradices (DAOM 197198) reveals functional tradeoffs in an obligate symbiont. New Phytol 193:755–769

    PubMed  CAS  Google Scholar 

  • Tran HT, Plaxton WC (2008) Proteomic analysis of alterations in the secretome of Arabidopsis thaliana suspension cells subjected to nutritional phosphate deficiency. Proteomics 8:4317–4326

    PubMed  CAS  Google Scholar 

  • Uehlein N, Fileschi K, Eckert M, Bienert G, Bertl A, Kaldenhoff R (2007) Arbuscular mycorrhizal symbiosis and plant aquaporin expression. Phytochemistry 68:122–129

    PubMed  CAS  Google Scholar 

  • van Tichelen KK, Colpaert JV (2000) Kinetics of phosphate absorption by mycorrhizal and non-mycorrhizal Scots pine seedlings. Physiol Plant 110:96–103

    Google Scholar 

  • Vauclare P, Kopriva S, Fell D, Suter M, Sticher L, von Ballmoos P, Krähenbühl U, Op den Camp R, Brunold C (2002) Flux control of sulphate assimilation in Arabidopsis thaliana: adenosine 59-phosphosulphate reductase is more susceptible to negative control by thiols than ATP sulphurylase. Plant J 31:729–740

    PubMed  CAS  Google Scholar 

  • Walder F, Niemann H, Natarajan M, Lehmann MF, Boller T, Wiemken A (2012) Mycorrhizal networks: common goods of plants shared under unequal terms of trade. Plant Phys 159:789–797

    CAS  Google Scholar 

  • Wallace IS, Roberts DM (2004) Homology modeling of representative subfamilies of Arabidopsis major intrinsic proteins. Classification based on the aromatic/arginine selectivity filter. Plant Physiol 135:1059–1068

    PubMed  CAS  Google Scholar 

  • Wallander H, Wickman T (1999) Biotite and microcline as potassium sources in ectomycorrhizal and non-mycorrhizal Pinus sylvestris seedlings. Mycorrhiza 9:25–32

    CAS  Google Scholar 

  • Wallenda T, Read DJ (1999) Kinetics of amino acid uptake by ectomycorrhizal roots. Plant Cell Env 22:179–187

    CAS  Google Scholar 

  • Wiese J, Kleber R, Hampp R, Nehls U (2000) Functional characterization of the Amanita muscaria monosaccharide transporter Am Mst1. Plant Biol 2:1–5

    Google Scholar 

  • Willmann A, Weiss M, Nehls U (2007) Ectomycorrhiza-mediated repression of the high-affinity ammonium importer gene AmAMT2 in Amanita muscaria. Curr Genet 51:71–78

    PubMed  CAS  Google Scholar 

  • Wipf D, Benjdia M, Rikirsch E, Zimmermann S, Tegeder M, Frommer WB (2003) An expression cDNA library for suppression cloning in yeast mutants, complementation of a yeast his4 mutant and EST analysis from the symbiotic basidiomycete Hebeloma cylindrosporum. Genome 46:177–181

    PubMed  CAS  Google Scholar 

  • Wipf D, Benjdia M, Tegeder M, Frommer WB (2002) Characterization of a general amino acid permease from Hebeloma cylindrosporum. FEBS Lett 528:119–124

    PubMed  CAS  Google Scholar 

  • Wright DP, Johansson T, Le Quéré A, Söderström B, Tunlid A (2005a) Spatial patterns of gene expression in the extramatrical mycelium and mycorrhizal root tips formed by the ectomycorrhizal fungus Paxillus involutus in association with birch (Betula pendula) seedlings in soil microcosms. New Phytol 167:579–596

    PubMed  CAS  Google Scholar 

  • Wright DP, Scholes JD, Read DJ, Rolfe SA (2005b) European and African maize cultivars differ in their physiological and molecular responses to mycorrhizal infection. New Phytol 167:881–896

    PubMed  CAS  Google Scholar 

  • Wright DP, Scholes JD, Read DJ, Rolfe SA (2000) Changes in carbon allocation and expression of carbon transporter genes in Betula pendula Roth. colonized by the ectomycorrhizal fungus Paxillus involutus (Batsch) Fr. Plant Cell Environ 23:39–49

    CAS  Google Scholar 

  • Wright DP, Read DJ, Scholes JD (1998) Mycorrhizal sink strength influences whole plant carbon balance of Trifolium repens L. Plant Cell Environ 21:881–891

    Google Scholar 

  • Wudick MM, Luu DT, Maurel C (2009) A look inside: localization patterns and functions of intracellular plant aquaporins. New Phytol 184:289–302

    PubMed  CAS  Google Scholar 

  • Wykoff DD, O’Shea EK (2001) Phosphate transport and sensing in Saccharomyces cerevisiae. Genetics 159:1491–1499

    PubMed  CAS  Google Scholar 

  • Yang SY, Grønlund M, Jakobsen I, Grotemeyer MS, Rentsch D, Miyao A, Hirochika H, Kumar CS, Sundaresan V, Salamin N, Catausan S, Mattes N, Heuer S, Paszkowski U (2012) Nonredundant regulation of rice arbuscular mycorrhizal symbiosis by two members of the phosphate transporter1 gene family. Plant Cell 24(10):4236–4251

    Google Scholar 

  • Yoshimoto N, Inoue E, Watanabe-Takahashi A, Saito K, Takahashi H (2007) Posttranscriptional regulation of high-affinity sulfate transporters in Arabidopsis by sulfur nutrition. Plant Physiol 145:378–388

    PubMed  CAS  Google Scholar 

  • Zhu YG, Christie P, Laidlaw AS (2001) Uptake of Zn by arbuscular mycorrhizal white clover from Zn-contaminated soil. Chemosphere 42:193–199

    PubMed  CAS  Google Scholar 

Download references

Acknowledgments

All the authors of this work are thankful for the support of the ANR TRANSMUT (ANR-10-BLAN-1604-0). LC, NAL, JD, LB, MC and DW received financial support from the Burgundy Regional Council (PARI Agrale 8); NAL and DW received financial support from the Université Franco Italienne/Università Italo Francese. PEC received financial support from the Swiss National Science Foundation (grant no. PZ00P3_136651).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Leonardo Casieri.

Additional information

Leonardo Casieri and Nassima Ait Lahmidi contributed equally to the work.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

Gene IDs and accession numbers of plant Pi transporters used for Fig. 3 (DOC 213 kb)

ESM 2

Gene IDs and accession numbers of fungal Pi transporters used for Fig. 4 (DOC 185 kb)

ESM 3

Gene IDs and accession numbers of plant sulphate transporters used for Fig. 6 (DOC 147 kb)

ESM 4

Gene IDs and accession numbers of fungal sulphate transporters used for Fig. 7 (DOC 141 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Casieri, L., Ait Lahmidi, N., Doidy, J. et al. Biotrophic transportome in mutualistic plant–fungal interactions. Mycorrhiza 23, 597–625 (2013). https://doi.org/10.1007/s00572-013-0496-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00572-013-0496-9

Keywords

Navigation