Skip to main content
Log in

Pectin localization in the Mediterranean orchid Limodorum abortivum reveals modulation of the plant interface in response to different mycorrhizal fungi

  • Original Paper
  • Published:
Mycorrhiza Aims and scope Submit manuscript

Abstract

In most mycorrhizal symbioses, phylogenetically distinct fungi colonize simultaneously the roots of individual host plants. A matter of debate is whether plants can distinguish among these fungal partners and differentiate their cellular responses. We have addressed this question in the orchid mycorrhizal symbiosis, where individual roots of the Mediterranean species Limodorum abortivum can be colonized by a dominant unculturable fungal symbiont belonging to the genus Russula and by more sporadic mycelia in the genus Ceratobasidium (form-genus Rhizoctonia). The phylogenetic position of the Ceratobasidium symbionts was further investigated in this work. Both Russula and Ceratobasidium symbionts form intracellular coils in the cortical roots of L. abortivum, but hyphae are very different in size and morphology, making the two fungi easily distinguishable. We have used John Innes Monoclonal 5, a widely used monoclonal antibody against pectin, to investigate the composition of the symbiotic plant interface around the intracellular coils formed by the two fungal partners. Immunolabelling experiments showed that pectin is exclusively found in the interface formed around the Ceratobasidium, and not around the Russula symbiont. These data indicate that the plant responses towards distinct mycorrhizal fungal partners can vary at a cellular level.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Alguacil MM, Roldán A, Torres MP (2009) Complexity of semiarid gypsophilous shrub communities mediates the AMF biodiversity at the plant species level. Microb Ecol 57:718–727

    Article  CAS  PubMed  Google Scholar 

  • Balestrini R, Hahn MG, Faccio A et al (1996) Differential localization of carbohydrate epitopes in plant cell walls in the presence and absence of arbuscular mycorrhizal fungi. Plant Physiol 111:203–213

    CAS  PubMed  Google Scholar 

  • Bidartondo MI, Read DJ (2008) Fungal specificity bottlenecks during orchid germination and development. Mol Ecol 17:3707–3716

    PubMed  Google Scholar 

  • Bonfante P, Perotto S (1995) Tansley Review N. 82. Strategies of arbuscular mycorrhizal fungi when infecting host plants. New Phytol 130:3–21

    Article  Google Scholar 

  • Bougoure DS, Cairney JWG (2005) Assemblages of ericoid mycorrhizal and other root-associated fungi from Epacris pulchella (Ericaceae) as determined by culturing and direct DNA extraction from roots. Environ Microbiol 7:819–827

    Article  CAS  PubMed  Google Scholar 

  • D’Ovidio R, Mattei B, Roberti S et al (2004) Polygalacturonases, polygalacturonase-inhibiting proteins and pectic oligomers in plant–pathogen interactions. Biochim Biophys Acta 1696:237–244

    PubMed  Google Scholar 

  • Day DA, Kaiser BN, Thomson R et al (2001) Nutrient transport across symbiotic membranes from legume nodules. Aust J Plant Physiol 28:667–674

    CAS  Google Scholar 

  • Dearnaley JDW (2007) Further advances in orchid mycorrhizal research. Mycorrhiza 17:475–486

    Article  PubMed  Google Scholar 

  • Gebauer G, Meyer M (2003) N-15 and C-13 natural abundance of autotrophic and myco-heterotrophic orchids provides insight into nitrogen and carbon gain from fungal association. New Phytol 160:209–223

    Article  CAS  Google Scholar 

  • Gianinazzi-Pearson V, Gianinazzi S, Guillemin JP, Trouvelot A, Duc G (1991) Genetic and cellular analysis of resistance to vesicular arbuscular (VA) mycorrhizal fungi in pea mutants. In: Hennecke H, Verma DPS (eds) Advances in molecular genetics of plant–microbe interactions. Kluwer Academic, Dordrecht, pp 336–342

    Google Scholar 

  • Girlanda M, Selosse MA, Cafasso D et al (2006) Inefficient photosynthesis in the Mediterranean orchid Limodorum abortivum is mirrored by specific association to ectomycorrhizal Russulaceae. Mol Ecol 15:491–504

    Article  CAS  PubMed  Google Scholar 

  • Hadley G (1970) Non-specificity of symbiotic infection in orchid mycorrhiza. New Phytol 69:1015–1023

    Article  Google Scholar 

  • Harrison MJ (2005) Signaling in the arbuscular mycorrhizal symbiosis. Annu Rev Microbiol 59:19–42

    Article  CAS  PubMed  Google Scholar 

  • Huynh TT, Thomson R, Mclean CB et al (2009) Functional and genetic diversity of mycorrhizal fungi from single plants of Caladenia formosa (Orchidaceae). Ann Bot London 104:757–765

    Article  CAS  Google Scholar 

  • Huelsenbeck JP, Ronquist F (2001) MrBayes: Bayesian inference of phylogenetic trees. Bioinformatics 17:754–755

    Article  CAS  PubMed  Google Scholar 

  • Huelsenbeck JP, Larget B, Miller RE et al (2002) Potential applications and pitfalls of Bayesian inference of phylogeny. Syst Biol 51:673–688

    Article  PubMed  Google Scholar 

  • Jansa J, Smith FA, Smith SA (2008) Are there benefits of simultaneous root colonization by different arbuscular mycorrhizal fungi? New Phytol 177:779–789

    Article  CAS  PubMed  Google Scholar 

  • Knox JP, Linstead PJ, King J et al (1990) Pectin esterification is spatially regulated both within cell walls and between developing tissues of root apices. Planta 181:512–521

    Article  CAS  Google Scholar 

  • Larkin MA, Blackshields G, Brown NP et al (2007) Clustal W and Clustal X version 2.0. Bioinformatics 23:2947–2948

    Article  CAS  PubMed  Google Scholar 

  • Leake JR (1994) Tansley Review N. 69. The biology of mycoheterotrophic (‘saprophytic’) plants. New Phytol 127:171–216

    Article  Google Scholar 

  • Martin F, Aerts A, Ahren D et al (2008) The genome of Laccaria bicolor provides insights into mycorrhizal symbiosis. Nature 452:88–93

    Article  CAS  PubMed  Google Scholar 

  • McKendrick SL, Leake JR, Read DJ (2000) Symbiotic germination and development of myco-heterotrophic plants in nature: transfer of carbon from ectomycorrhizal Salix repens and Betula pendula to the orchid Corallorhiza trifida through shared hyphal connections. New Phytol 145:539–548

    Article  Google Scholar 

  • Nagendran S, Hallen-Adams HE, Paper JM et al (2009) Reduced genomic potential for secreted plant cell-wall-degrading enzymes in the ectomycorrhizal fungus Amanita bisporigera, based on the secretome of Trichoderma reesei. Fungal Genet Biol 46:427–435

    Article  CAS  PubMed  Google Scholar 

  • Oldroyd GED, Harrison MJ, Paszkowski U (2009) Reprogramming plant cells for endosymbiosis. Science 324:753–754

    Article  CAS  PubMed  Google Scholar 

  • Opik M, Metsis M, Daniell TJ et al (2009) Large-scale parallel 454 sequencing reveals host ecological group specificity of arbuscular mycorrhizal fungi in a boreonemoral forest. New Phytol 184:424–437

    Article  CAS  PubMed  Google Scholar 

  • Parniske M (2004) Molecular genetics of the arbuscular mycorrhizal symbiosis. Curr Opin Plant Biol 7:414–421

    Article  CAS  PubMed  Google Scholar 

  • Perotto S, Brewin NJ, Bonfante P (1994) Colonization of pea roots by the mycorrhizal fungus Glomus versiforme and by Rhizobium bacteria: immunological comparison using monoclonal antibodies as probes for plant-cell surface components. Mol Plant Microbe Int 7:91–98

    Google Scholar 

  • Perotto S, Peretto R, Faccio A et al (1995) Ericoid mycorrhizal fungi: cellular and molecular bases if their interactions with the host plant. Can J Bot 73:S557–S568

    Article  CAS  Google Scholar 

  • Perotto S, Actis Perino E, Perugini J et al (1996) Molecular diversity of fungi from ericoid mycorrhizal roots. Mol Ecol 5:123–131

    Article  CAS  Google Scholar 

  • Peterson RL, Massicotte HB (2004) Exploring structural definitions of mycorrhizas, with emphasis on nutrient-exchange interfaces. Can J Bot 82:1074–1088

    Article  Google Scholar 

  • Peterson RL, Bonfante P, Faccio A et al (1996) The interface between fungal hyphae and orchid protocorm cells. Can J Bot 74:1861–1870

    Article  Google Scholar 

  • Posada D (2008) jModeltest: phylogenetic model averaging. Mol Biol Evol 25:1253–1256

    Article  CAS  PubMed  Google Scholar 

  • Ridley BL, O’Neill MA, Mohnen D (2001) Pectins: structure, biosynthesis, and oligogalacturonide-related signaling. Phytochemistry 57:929–967

    Article  CAS  PubMed  Google Scholar 

  • Rasmussen HN (2002) Recent developments in the study of orchid mycorrhiza. Plant Soil 244:149–163

    Article  CAS  Google Scholar 

  • Roy M, Watthana S, Stier A et al (2009) Two mycoheterotrophic orchids from Thailand tropical dipterocarpacean forests associate with a broad diversity of ectomycorrhizal fungi. BMC Biol 7:51

    Article  PubMed  Google Scholar 

  • Sharples JM, Chambers SM, Meharg AA et al (2000) Genetic diversity of root-associated fungal endophytes from Calluna vulgaris at contrasting field sites. New Phytol 148:153–162

    Article  CAS  Google Scholar 

  • Stark C, Babik W, Durka W (2009) Fungi from the roots of the common terrestrial orchid Gymnadenia conopsea. Mycol Res 113:952–959

    Article  CAS  PubMed  Google Scholar 

  • Suarez JP, Weiss M, Abele A et al (2006) Diverse tulasnelloid fungi form mycorrhizas with epiphytic orchids in an Andean cloud forest. Mycol Res 110:1257–1270

    Article  CAS  PubMed  Google Scholar 

  • Sweetingham MW, Cruickshank RH, Wong DH (1986) Pectic zymograms and taxonomy and pathogenicity of Ceratobasidiaceae. Trans Brit Mycol Soc 86:305–311

    Article  CAS  Google Scholar 

  • Tamura K, Dudley J, Nei M et al (2007) MEGA4: molecular evolutionary genetics analysis (MEGA) software version 4.0. Mol Biol Evol 24:1596–1599

    Article  CAS  PubMed  Google Scholar 

  • Taylor DL, Bruns TD, Leake JR, Read DJ (2002) Mycorrhizal specificity and function in myco-heterotrophic plants. In: Mycorrhizal ecology, Van der Heijden MGA, Sanders I (eds) Ecological Studies 157:375–413

  • Taylor DL, Bruns TD, Szaro TM, Hodges SA (2003) Divergence in mycorrhizal specialization within Hexalectris spicata, a nonphotosynthetic desert orchid. Am J Bot 90:1168–1179

    Article  CAS  Google Scholar 

  • van der Heijden MAG, Klironomos JN, Ursic M et al (1998) Mycorrhizal fungal diversity determines plant biodiversity, ecosystem variability and productivity. Nature 396:69–72

    Article  Google Scholar 

  • Yukawa T, Ogura-Tsujita Y, Shefferson RP et al (2009) Mycorrhizal diversity in Apostasia (Orchidaceae) indicates the origin and evolution of orchid mycorrhiza. Am J Bot 96:1997–2009

    Article  Google Scholar 

Download references

Acknowledgments

We thank Mara Novero for her technical help. MR was supported by the Fondazione CRT with a Progetto Lagrange fellowship. Research was funded by MIUR (PRIN 2007 Project) and by local funding by the University of Torino.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Silvia Perotto.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Paduano, C., Rodda, M., Ercole, E. et al. Pectin localization in the Mediterranean orchid Limodorum abortivum reveals modulation of the plant interface in response to different mycorrhizal fungi. Mycorrhiza 21, 97–104 (2011). https://doi.org/10.1007/s00572-010-0315-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00572-010-0315-5

Keywords

Navigation