Skip to main content
Log in

Ectomycorrhizal community structure in a healthy and a Phytophthora-infected chestnut (Castanea sativa Mill.) stand in central Italy

  • Original Paper
  • Published:
Mycorrhiza Aims and scope Submit manuscript

Abstract

Ink disease caused by Phytophthora cambivora is a major disease of sweet chestnut (Castanea sativa). In two C. sativa stands in central Italy, one (Montesanti) that is infected with P. cambivora and the trees showing symptoms of ink disease and another healthy stand (Puzzella), the ectomycorrhizal (ECM) community structure was investigated. On the roots of the surviving trees of the diseased stand, 29 different ECM species were determined compared to 23 in the healthy stand. Eleven ECM species were common to both stands; however, a number of species were unique to one of the stands. Cenococcum geophilum was dominant at both sites, but the percentage colonisation was much higher at Montesanti (40.8%) compared to Puzzella (27.2%). There was a switch in species from Russula vesca, Russula lepida and Russula azurea at Puzzella to Russula nigricans, R. lepida and Russula delica at Montesanti. Both R. vesca and R. azurea were found only at the Puzzella site. At the diseased site, the ECMs formed had a smaller root tip diameter, and the ECM at the healthy site had more abundant extramatrical hyphae.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Adua M (1999) The sweet chestnut throughout history from the Miocene to the third millennium, II International Symposium on Chestnut. Acta Hortic 494:29–36

    Article  Google Scholar 

  • Agerer R (1987-1997) Colour atlas of ectomycorrhizae. Einhorn-Verlag, Munich

  • Barham RO, Marx DH, Ruehle JL (1974) Infection of ectomycorrhizal and nonmycorrhizal roots of shortleaf pine by nematodes and Phytophthora cinnamomi. Phytopathology 64(9):1260–1264

    Article  Google Scholar 

  • Bergero R, Perotto S, Girlanda M, Vidano G, Luppi AM (2000) Ericoid mycorrhizal fungi are common root associates of a Mediterranean ectomycorrhizal plant (Quercus ilex). Mol Ecol 9:1639–1649. doi:10.1046/j.1365-294x.2000.01059.x

    Article  CAS  PubMed  Google Scholar 

  • Bergot M, Cloppet E, Pérarnaud V, Déqué M, Marçais B, Desprez-Loustau M-L (2004) Simulation of potential range expansion of oak disease caused by Phytophthora cinnamomi under climate change. Glob Chang Biol 10:1539–155

    Article  Google Scholar 

  • Bounous G, Abreu CG (1998) Metodi di lotta integrate al mal dell'inchiostro. Informatore Agrario 46:87–90

    Google Scholar 

  • Brasier CM, Scott JK (1994) European oak declines and global warming: a theoretical assessment with special reference to the activity of Phytophthora cinnamomi. EPPO Bull 24:221–232. doi:10.1111/j.1365-2338.1994.tb01063.x

    Article  Google Scholar 

  • Brasier CM (1999) Phytopthora Pathogens of trees: their rising profile in Europe. Forestry Commission Information Note, 30. Forestry Commission, Edinburgh.

  • Branzanti MB, Rocca E, Pisi A (1999) Effect of ectomycorrhizal fungi on chestnut ink disease. Mycorrhiza 9:103–109

    Article  Google Scholar 

  • CC (2007) Climate Change (2007) The physical science basis. Contribution of Working Group I to the fourth assessment report of the intergovernmental panel on Climate Change. Solomon S, Qin D, Manning M, Chen Z, Marquis M. Averyt KB, Tignor M, Miller HL (eds). Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA

  • Chakravarty G, Peterson RL, Ellis BE (1991) Interaction between the ectomycorrhizal fungus Paxillus involutus, damping-off fungi and Pinus resinosa seedlings. J Phytopathol 132:207–218. doi:10.1111/j.1439-0434.1991.tb00113.x

    Article  Google Scholar 

  • Chiatante D, Scippa SG, Di Iorio A, Sarnataro M (2003) The influence of steep slopes on root system development. J Plant Growth Regul 21(4):247–260

    Article  Google Scholar 

  • Chao A (1987) Estimating the population size for capture–recapture data with unequal catchability. Biometrics 43:783–791. doi:10.2307/2531532

    Article  CAS  PubMed  Google Scholar 

  • Colwell RK (2006) EstimateS, Version 8.0: Statistical estimation of species richness and shared species from samples. [Online] Available at: http://viceroy.eeb.uconn.edu/EstimateS

  • Conedera M, Manetti MC, Giudici F, Amorini E (2004) Distribution and economic potential of the sweet chestnut (Castanea sativa Mill.) in Europe. Ecol Medit 30(2):179–193

    Google Scholar 

  • Crandall BS, Gravat GF, Ryan MM (1945) Root disease of Castanea species and some coniferous and broadleaf nursery stocks, caused by Phytophthora cinnamomi. Phytopathology 3:162–180

    Google Scholar 

  • Crawford M (1995) Chestnuts production and culture. Agro Forestry Research Trust, Devon, UK

    Google Scholar 

  • Dahlberg A (2001) Community ecology of ectomycorrhizal fungi: an advancing interdisciplinary field. New Phytol 150:555–562. doi:10.1046/j.1469-8137.2001.00142.x

    Article  Google Scholar 

  • Day WR (1938) Root-rot of sweet chestnut and beech caused by species of Phytophthora. I. Cause and symptoms of disease: its relation to soil conditions. Forestry 12:101–116

    Article  Google Scholar 

  • Elmqvist T, Folke C, Nyström M, Peterson G, Bengtsson J, Walker B, Norberg J (2003) Response diversity, ecosystem change, and resilience. Front Ecol Environ 1:488–494

    Article  Google Scholar 

  • Erland S, Taylor AFS (2002) Diversity of ectomycorrhizal communities in relation to the abiotic environment. In: Van der Heijden MGA, Sanders IR (eds) Mycorrhizal ecology. Ecological studies, vol 157. Springer, Berlin, pp. 470–485

    Google Scholar 

  • Erland S, Taylor AFS (2003) Diversity of Ecto-mycorrhizal fungal communities in relation to the abiotic environment. In: Van der Heijden MGA, Sanders IR (eds) Mycorrhizal ecology ecological studies. Springer, Berlin, pp 163–193

    Google Scholar 

  • Finlay RD, Söderström B (1992) Mycorrhiza and carbon flow to soil. In: Allen MF (ed) Mycorrhizal Functioning. Chapman & Hall, London, pp 134–160

    Google Scholar 

  • Fleisch MR (2002) Vers une recrudescence de la maladie de l’encre du châtaignier en forêt? Les Cahiers du DSF 1-2002. La Santédes Forêts (France) en 2000 et 2001 Ministere de l'Agriculture Alimentation, Pêche et Affaires rurales. (DERF) Paris pp. 63-66

  • Fleischmann F, Göttlein A, Rodenkirchen H, Lütz C, Oßwald W (2004) Biomass, nutrient and pigment content of beech (Fagus sylvatica) saplings infected with Phytophthora citricola, P. cambivora, P. pseudosyringae and P. undulate. For Pathol 34:79–92. doi:10.1111/j.1439-0329.2004.00349.x

    Article  Google Scholar 

  • Gardes M, Bruns TD (1993) ITS primers with enhanced specificity for basidiomycetes – application to the identification of mycorrhizae and rusts. Mol Ecol 2:113–118

    Article  CAS  PubMed  Google Scholar 

  • Gebhardt S, Neubert K, Wöllecke J, Münzenberger B, Hüttl RF (2007) Ectomycorrhiza communities of red oak (Quercus rubra L.) of different age in the Lusatian lignite mining district, East Germany. Mycorrhiza 17(4):279–290. doi:10.1007/s00572-006-0103-4

    Article  CAS  PubMed  Google Scholar 

  • Gehring CA, Whitham TG (1991) Herbivore-driven mycorrhizal mutualism in insect-susceptible pinyon pine. Nature 353:556–557. doi:10.1038/353556a0

    Article  Google Scholar 

  • Gehring CA, Cobb NS, Whitham TG (1997) Three-way interactions among ectomycorrhizal mutualists, scale insects, and resistant and susceptible pinyon pines. Am Nat 149:824–841. doi:10.1086/286026

    Article  CAS  PubMed  Google Scholar 

  • Godbold DL (2005) Ectomycorrhizal community structure: linking biodiversity to function. Prog Bot 66:374–391. doi:10.1007/3-540-27043-4_15

    Google Scholar 

  • Godbold DL, Berntson GM (1997) Elevated atmospheric CO2 concentration leads to changes in ECM morphotype assemblage in Betula papyrifera. Tree Physiol 17:347–350

    Article  CAS  PubMed  Google Scholar 

  • Godbold DL, Berntson GM, Bazzaz FA (1997) Growth and mycorrhizal colonization of three North American tree species under elevated atmospheric CO2. New Phytol 137:433–440. doi:10.1046/j.1469-8137.1997.00842.x

    Article  CAS  Google Scholar 

  • Gomes-Laranjo J, Araújo-Alves J, Ferreira-Cardoso J, Pimentel-Pereira M, Abreu CG, Torres-Pereira J (2004) Effect of chestnut Ink Disease on photosynthetic performance. J Phytopathol 152(3):138–144. doi:10.1111/j.1439-0434.2004.00814.x

    Article  Google Scholar 

  • Horton TS, Bruns TD (2001) The molecular revolution in ectomycorrhizal ecology: peeking into the black-box. Mol Ecol 10:1855–1871. doi:10.1046/j.0962-1083.2001.01333.x

    Article  CAS  PubMed  Google Scholar 

  • Jung T, Nechwatal J, Cooke DEL, Hartmann G, Blaschke M, Oßwald W, Duncan J, Delatour C (2003) Phytophthora pseudosyringae sp. nov., a new species causing root and collar rot of deciduous tree species in Europe. Mycol Res 107(7):772–789. doi:10.1017/S0953756203008074

    Article  CAS  PubMed  Google Scholar 

  • Kernaghan G (2005) Mycorrhizal diversity: Cause and effect? Pedobiologia (Jena) 49:511–520. doi:10.1016/j.pedobi.2005.05.007

    Article  Google Scholar 

  • Kõljalg U, Larsson K-H, Abarenkov K, Nilsson RH, Alexander IJ, Eberhardt U, Erland S, Høiland K, Kjøller R, Larsson E, Pennanen T, Sen R, Taylor AFS, Tedersoo L, Vrålstad T, Ursing BM (2005) UNITE: a database providing web-based methods for the molecular identification of ectomycorrhizal fungi. New Phytologist 166:1063–1068

    Article  PubMed  Google Scholar 

  • Krebs CJ (1989) Ecological methodology. Harper & Row, New York

  • Kuikka K, Härmä E, Markkola AM, Rautio P, Roitto M, Saikkonen K, Ahonen-Jonnarth U, Finlay R, Tuomi J (2003) Severe defoliation of Scots pine reduces reproductive investment by ectomycorrhizal symbionts. Ecology 84:2051–2061. doi:10.1890/02-0359

    Article  Google Scholar 

  • Landeweert R, Leeflang P, Kuyper TW, Hoffland E, Rosling A, Wernars K, Smit E (2003) Molecular identification of ectomycorrhizal mycelium in soil horizons. Appl Environ Microbiol 69:327–333

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Last FT, Dighton J, Mason PA (1987) Successions of sheathing mycorrhizal fungi. Trends Ecol Evol 2:157–161. doi:10.1016/0169-5347(87)90066-8

    Article  CAS  PubMed  Google Scholar 

  • Malajczuk N (1988) Interaction between Phytophthora cinnamomi zoospores and micro-organisms on non-mycorrhizal and ectomycorrhizal roots of Eucalyptus marginata. Trans Br Mycol Soc 90:375–382

    Article  Google Scholar 

  • Marais LJ, Kotze JM (1979) Ectomycorrhizae of Pinus Patula as biological deterrents to Phytophthora cinnamomi. S Afr For J 99:35–39

    Google Scholar 

  • Markkola AM, Kuikka K, Rautio P, Härmä E, Roitto M, Tuomi J (2004) Defoliation increases carbon limitation in ectomycorrhizal symbiosis of Betula pubescens. Oecologia 140:234–240. doi:10.1007/s00442-004-1587-2

    Article  PubMed  Google Scholar 

  • Marx DH (1969a) The influence of ectotrophic mycorrhizal fungi on the fungi on the resistance to pathogenic infections. I. Antagonism of mycorrhizal fungi to pathogenic fungi and soil bacteria. Phytopath 59:153–163

    Google Scholar 

  • Marx DH (1969b) The influence of ectotrophic mycorrhizal fungi on the fungi on the resistance to pathogenic infections. II. Production, identification, and biological activity of antibiotics produced by Leucopaxillus cerealis var. piceina. Phytopath 59:411–417

    CAS  Google Scholar 

  • Marx DH (1970) The influence of ectotrophic mycorrhizal fungi on the resistance of pine roots to pathogenic interactions V: resistance of mycorrhizae to infection by vegetative mycelium of Phytophthora cinnamomi. Phytopath 60:1472–1473

    Article  Google Scholar 

  • Marx DH (1972) Ectomycorrhizae as biological deterrents. Annu Rev Phytopathol 10:429–454. doi:10.1146/annurev.py.10.090172.002241

    Article  CAS  PubMed  Google Scholar 

  • Marx DH (1973) Growth of ectomycorrhizal and nonmycorrhizal shortleaf pine seedlings in soil with Phytophthora cinnamomi. Phytopath 63:18–23

    Article  Google Scholar 

  • Marx DH, Davey CB (1969a) The influence of ectotrophic mycorrhizal fungi on the resistance of pine roots to pathogenic interactions III: resistance of aseptically formed mycorrhizae to infection by Phytophthora cinnamomi. Phytopathology 59(1):549–558

    Google Scholar 

  • Marx DH, Davey CB (1969b) The influence of ectotrophic mycorrhizal fungi on the resistance of pine roots to pathogenic interactions IV: resistance of naturally occurring mycorrhizae to infection by Phytophthora cinnamomi. Phytopathology 59(1):559–565

    Google Scholar 

  • Milburn M, Gravatt GF (1932) Preliminary note on a Phytophthora root disease of chestnut. Phytopathology 22:977–978

    Google Scholar 

  • Peraira-Lorenzo S, Ramos-Cabrer AM (2004) Chestnut, an ancient crop with future. In: Dris R, Jain SM (eds) Production practices and quality assessment of food crops, Vol. 1, 1–20 “Preharvest Practice”, Kluwer Academic Publishers, the Netherlands, pp. 105–161

    Google Scholar 

  • Rao CS, Sharma GD, Shukla AK (1997) Distribution of ectomycorrhizal fungi in pure stands of different age groups of Pinus kesiya. Can J Microbiol 43:85–91

    Article  CAS  Google Scholar 

  • Rossow LJ, Bryant JP, Kielland K (1997) Effects of above ground browsing by mammals on mycorrhizal infection in an early successional taiga ecosystem. Oecologia 110:94–98. doi:10.1007/s004420050137

    Article  CAS  PubMed  Google Scholar 

  • Saikkonen K, Ahonen-Jonnarth U, Markkola AM, Helander M, Tuomi J, Roitto M, Ranta H (1999) Defoliation and mycorrhizal symbiosis: a functional balance between carbon sources and belowground sinks. Ecol Lett 2:19–26. doi:10.1046/j.1461-0248.1999.21042.x

    Article  Google Scholar 

  • Saravesi K, Markkola AM, Rautio P, Roitto M, Tuomi J (2008) Defoliation causes parallel temporal responses in a host tree and its fungal symbionts. Oecologia 156:117–123. doi:10.1007/s00442-008-0967-4

    Article  PubMed  Google Scholar 

  • Smith JE, Molina R, Huso MMP, Luoma DL, McKay D, Castellano MA, Lebel T, Valachovic Y (2002) Species richness, abundance, and composition of hypogeous and epigeous ectomycorrhizal fungal sporocarps in young, rotation-age, and old-growth stands of Douglas-fir (Pseudotsuga menziesii) in the Cascade Range of Oregon, USA. Can J Bot 80:186–204. doi:10.1139/b02-003

    Article  Google Scholar 

  • Smith SE, Read DJ (1997) Mycorrhizal symbiosis. Academic, London

    Google Scholar 

  • Stark S, Kytöviita MM (2005) Evidence of antagonistic interactions between rhizosphere microorganisms and mycorrhizal fungi associated with birch (Betula pubescens). Acta Oecol 28:149–155. doi:10.1016/j.actao.2005.03.007

    Article  Google Scholar 

  • Strouts RG (1981) Phytophthora disease of trees and shurbs. Forestry Commission Arboriculture Leaflet No 8 HMSO London.

  • Tedersoo L, Suvi T, Larsson E, Kõljalg U (2006) Diversity and community structure of ectomycorrhizal fungi in a wooded meadow. Mycol Res 110:734–748

    Article  PubMed  Google Scholar 

  • Vannini A, Vettraino AM (2001) Ink disease in chestnuts: impact on the European chestnut. For Snow Landsc Res 76(3):345–350

    Google Scholar 

  • Vannini A, Vettraino AM, Fabi A, Montaghi A, Valentini R, Belli C (2005) Monitoring Ink Disease of chestnut with the airborne multispectral system A.S.P.I.S. Acta Hortic 693:529–533

    Article  Google Scholar 

  • Vettraino AM, Natili G, Anselmi N, Vannini A (2001) Recovery and pathogenicity of Phytophthora species associated with a resurgence of ink disease in Castanea sativa in Italy. Plant Pathol 50:90–96. doi:10.1046/j.1365-3059.2001.00528.x

    Article  Google Scholar 

  • Vettraino AM, Morel O, Perlerou C, Robin C, Diamandis S, Vannini A (2005) Occurrence and distribution of Phytophthora species in European chestnut stands, and their association with ink disease and crown decline. Eur J Plant Pathol 111:169–180. doi:10.1007/s10658-004-1882-0

    Article  Google Scholar 

  • Visser S (1995) Ectomycorrhizal fungal succession in jack pine stands following wildfire. New Phytol 129:389–401. doi:10.1111/j.1469-8137.1995.tb04309.x

    Article  Google Scholar 

  • Wang ZY, Göttlein A, Rodenkirchen H, Fleischmann F, Oßwald W (2003) The influence of Phytophthora citricola on rhizosphere soil solution chemistry. J Phytopathol 151:365–368. doi:10.1046/j.1439-0434.2003.00729.x

    Article  CAS  Google Scholar 

  • Weste G (1983) Population dynamics and survival of Phytophthora. In: Erwin DC, Bartnicki-Garcia S, Tsao PH (eds) Phytophthora: its biology, taxonomy, ecology, and pathology. American Phytopathological Society, St. Paul, pp 237–258

    Google Scholar 

  • Wilkins WH, Harris GCM (1944) Investigations into the production of bacteriostatic substances by fungi. VI. Examination of the larger Basidiomycetes. Ann Appl Biol 31:261–270. doi:10.1111/j.1744-7348.1944.tb06737.x

    Article  Google Scholar 

  • White TJ, Bruns TD, Lee S, Taylor J (1990) Analysis of phylogenetic relationships by amplification and direct sequencing of ribosomal RNA genes. In: Innis MA et al. (eds) PCR protocols: A guide to methods and applications. Academic Press, New York, pp 315–322

  • Zak B (1964) Role of mycorrhizae in root disease. Annu Rev Phytopathol 2:377–392

    Article  Google Scholar 

  • Zohary D, Hopf M (2000) Domestication of plants in the Old World, 3rd edn. Oxford University Press, New York

    Google Scholar 

Download references

Acknowledgments

This study was funded by the EU through the 019 AGR0 project, Interreg IIIB.

We would like to thank COST (COST action E38) for funding a short-term scientific mission and Dr. Hojka Kraigher and Dr. Tine Grebenc for facilitating a research visit to the Slovenian Forest Institute (Ljubljana).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Douglas L. Godbold.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Blom, J.M., Vannini, A., Vettraino, A.M. et al. Ectomycorrhizal community structure in a healthy and a Phytophthora-infected chestnut (Castanea sativa Mill.) stand in central Italy. Mycorrhiza 20, 25–38 (2009). https://doi.org/10.1007/s00572-009-0256-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00572-009-0256-z

Keywords

Navigation