Skip to main content

Advertisement

Log in

Neighboring trees affect ectomycorrhizal fungal community composition in a woodland-forest ecotone

  • Original Paper
  • Published:
Mycorrhiza Aims and scope Submit manuscript

Abstract

Ectomycorrhizal fungi (EMF) are frequently species rich and functionally diverse; yet, our knowledge of the environmental factors that influence local EMF diversity and species composition remains poor. In particular, little is known about the influence of neighboring plants on EMF community structure. We tested the hypothesis that the EMF of plants with heterospecific neighbors would differ in species richness and community composition from the EMF of plants with conspecific neighbors. We conducted our study at the ecotone between pinyon (Pinus edulis)–juniper (Juniperus monosperma) woodland and ponderosa pine (Pinus ponderosa) forest in northern Arizona, USA where the dominant trees formed associations with either EMF (P. edulis and P. ponderosa) or arbuscular mycorrhizal fungi (AMF; J. monosperma). We also compared the EMF communities of pinyon and ponderosa pines where their rhizospheres overlapped. The EMF community composition, but not species richness of pinyon pines was significantly influenced by neighboring AM juniper, but not by neighboring EM ponderosa pine. Ponderosa pine EMF communities were different in species composition when growing in association with pinyon pine than when growing in association with a conspecific. The EMF communities of pinyon and ponderosa pines were similar where their rhizospheres overlapped consisting of primarily the same species in similar relative abundance. Our findings suggest that neighboring tree species identity shaped EMF community structure, but that these effects were specific to host-neighbor combinations. The overlap in community composition between pinyon pine and ponderosa pine suggests that these tree species may serve as reservoirs of EMF inoculum for one another.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Abella SR, Covington WW (2006) Forest ecosystems of an Arizona Pinus ponderosa landscape: multifactor classification and implications for ecological restoration. J Biogeogr 33:1368–1383 doi:10.1111/j.1365-2699.2006.01513.x

    Article  Google Scholar 

  • Allender CJ, Easterday WR, Van Ert MN, Wagner DM, Keim P (2004) High-throughput extraction of arthropod vector and pathogen DNA using bead milling. Biotechniques 37:730–734

    PubMed  CAS  Google Scholar 

  • Bakker MR, Garbye J, Nys C (2000) Effect of liming on the ectomycorrhizal status of oak. For Ecol Manag 126:121–131

    Article  Google Scholar 

  • Baxter JW, Dighton J (2001) Ectomycorrhizal diversity alters growth and nutrient acquisition of grey birch (Betula populifolia) seedlings in host–symbiont culture conditions. New Phytol 152:139–149 doi:10.1046/j.0028-646x.2001.00245.x

    Article  Google Scholar 

  • Baxter JW, Dighton J (2005) Phosphorus source alters host plant response to ectomycorrhizal diversity. Mycorrhiza 15:513–523 doi:10.1007/s00572-005-0359-0

    Article  PubMed  CAS  Google Scholar 

  • Breshears DD, Cobb NS, Rich PM, Price KP, Allen CD, Balice RG et al (2005) Regional vegetation die-off in response to global-change type drought. Proc Natl Acad Sci USA 102:15144–15148 doi:10.1073/pnas.0505734102

    Article  PubMed  CAS  Google Scholar 

  • Bruns TD (1995) Thoughts on the processes that maintain local species diversity of ectomycorrhizal fungi. Plant Soil 170:63–73 doi:10.1007/BF02183055

    Article  CAS  Google Scholar 

  • Burgess T, Dell D, Malajczuk N (1994) Variation in mycorrhizal development and growth stimulation by 20 Pisolithus isolates inoculated on to Eucalyptus grandis W. Hill ex Maiden. New Phytol 127:731–739 doi:10.1111/j.1469-8137.1994.tb02977.x

    Article  Google Scholar 

  • Chao A (1987) Estimating the population size for capture–recapture data with unequal catchability. Biometrics 43:783–791 doi:10.2307/2531532

    Article  PubMed  CAS  Google Scholar 

  • Dahlberg A, Jonsson L, Nylund JE (1997) Species diversity and distribution of biomass above and below-ground among ectomycorrhizal fungi in an old-growth Norway spruce forest in south Sweden. Can J Bot 75:1323–1335

    Article  Google Scholar 

  • Despain WP, Mosley JC (1990) Fire history and stand structures of a pinyon–juniper woodland at Walnut Canyon National Monument, Arizona. National Park Service Technical Report No. 34

  • Dickie IA, Reich PB (2005) Ectomycorrhizal fungal communities at forest edges. J Ecol 93:244–255 doi:10.1111/j.1365-2745.2005.00977.x

    Article  Google Scholar 

  • Dickie IA, Xu B, Koide RT (2002) Vertical niche differentiation of ectomycorrhizal hyphae in soil as shown by T-RFLP analysis. New Phytol 156:527–535 doi:10.1046/j.1469-8137.2002.00535.x

    Article  CAS  Google Scholar 

  • Dickie IA, Guza RC, Krazewski SE, Reich PB (2004) Shared ectomycorrhizal fungi between a herbaceous perennial (Helianthemum bicknellii) and oak (Quercus) seedlings. New Phytol 164:375–382 doi:10.1111/j.1469-8137.2004.01177.x

    Article  Google Scholar 

  • Dickie IA, Oleksyn J, Reich PB, Karolewski P, Zytkowiak R, Jagodzinski AM et al (2006) Soil modification by different tree species influences the extent of seedling ectomycorrhizal infection. Mycorrhiza 16:73–79 doi:10.1007/s00572-005-0013-x

    Article  PubMed  CAS  Google Scholar 

  • Faith DP, Minchin PR, Belbin L (1987) Compositional dissimilarity as a robust measure of ecological distance. Vegetatio 69:57–68 doi:10.1007/BF00038687

    Article  Google Scholar 

  • Finlay RD (1989) Functional aspects of phosphorus uptake and carbon translocation in incompatible ECM associations between Pinus sylvestris and Suillus grevillei and Boletinus cavipes. New Phytol 112:185–192 doi:10.1111/j.1469-8137.1989.tb02373.x

    Article  CAS  Google Scholar 

  • Gardes M, Bruns TD (1993) ITS primers with enhanced specificity for basidiomycetes—application to the identification of mycorrhizae and rusts. Mol Ecol 2:113–118 doi:10.1111/j.1365-294X.1993.tb00005.x

    Article  PubMed  CAS  Google Scholar 

  • Gardes M, Bruns TD (1996) Community structure of ECM fungi in a Pinus muricata forest: above- and below-ground views. Can J Bot 74:1572–1583 doi:10.1139/b96-190

    Article  Google Scholar 

  • Gehring CA, Whitham TG (1994) Comparisons of ectomycorrhizae on pinyons (Pinus edulis, Pinaceae) across extremes of soil type and herbivory. Am J Bot 81:1509–1516 doi:10.2307/2445327

    Article  Google Scholar 

  • Gehring CA, Theimer TC, Whitham TG, Keim P (1998) Ectomycorrhizal fungal community structure of pinyon pines growing in two environmental extremes. Ecology 79:1562–1572

    Article  Google Scholar 

  • Gitlin A, Sthultz CM, Bowker MA, Stumpf S, Ecton K, Kennedy K et al (2006) Mortality gradients within and among dominant plant populations as barometers of ecosystem change during extreme drought. Conserv Biol 20:1477–1486 doi:10.1111/j.1523-1739.2006.00424.x

    Article  PubMed  Google Scholar 

  • Hall T (2007) BioEdit biological sequence alignment editor, version 7.0.9. Carlsbad, CA, USA: Ibis Biosciences

  • Haskins KE, Gehring CA (2004) Interactions with juniper alter the abundance and composition of pinyon pine ectomycorrhizal fungal communities. Ecology 85:2687–2692 doi:10.1890/04-0306

    Article  Google Scholar 

  • Haskins KE, Gehring CA (2005) Evidence for mutualist limitation: the impacts of conspecific density on the mycorrhizal inoculum potential of woodland soils. Oecologia 145:123–131 doi:10.1007/s00442-005-0115-3

    Article  PubMed  Google Scholar 

  • Hasselquist N, Germino MJ, McGonigle T, Smith WK (2005) Variability of Cenococcum colonization and its ecophysiological significance for young conifers at alpine-treeline. New Phytol 165:867–873 doi:10.1111/j.1469-8137.2005.01275.x

    Article  PubMed  Google Scholar 

  • Hooten JA, Ort MA, Eslon MD (2001) Origin of cinders in Wupatki National Monument, Technical Report 2001–12. Desert Archaeology, Tucson, AZ

    Google Scholar 

  • Horton TR, Bruns TD (1998) Multiple-host fungi are the most frequent and abundant ectomycorrhizal types in a mixed stand of Douglas-fir (Pseudotsuga menziesii) and bishop pine (Pinus muricata). New Phytol 139:331–339 doi:10.1046/j.1469-8137.1998.00185.x

    Article  Google Scholar 

  • Horton TR, Bruns TD (2001) The molecular revolution in ectomycorrhizal ecology: peeking into the black box. Mol Ecol 10:1855–1871 doi:10.1046/j.0962-1083.2001.01333.x

    Article  PubMed  CAS  Google Scholar 

  • Hungate BA, Hart SC, Selmants PC, Boyle SI, Gehring CA (2007) Soil responses to management, increased precipitation, and added nitrogen in ponderosa pine forests. Ecol Appl 17:1352–1365 doi:10.1890/06-1187.1

    Article  PubMed  Google Scholar 

  • Ishida TA, Nara K, Hogetsu T (2007) Host effects on ectomycorrhizal fungal communities: insight from eight host species in mixed conifer–broadleaf forests. New Phytol 174:430–440 doi:10.1111/j.1469–8137.2007.02016.x

    Article  PubMed  CAS  Google Scholar 

  • Jonsson LM, Nilsson MC, Wardle DA, Zackrisson O (2001) Context dependent effects of ectomycorrhizal species richness on tree seedling productivity. Oikos 93:353–364 doi:10.1034/j.1600-0706.2001.930301.x

    Article  Google Scholar 

  • Kennedy KJ (2005) Above- and belowground impacts of off-road vehicles negatively affect establishment of a dominant forest tree. Masters thesis, Flagstaff, AZ, USA: Northern Arizona University

  • Kennedy PG, Izzo AD, Bruns TD (2003) There is high potential for the formation of common mycorrhizal networks between understorey and canopy trees in a mixed evergreen forest. J Ecol 91:1071–1080 doi:10.1046/j.1365-2745.2003.00829.x

    Article  Google Scholar 

  • Kennedy PG, Bergemann SE, Hortal S, Bruns TD (2007) Determining the outcome of field-based competition between two Rhizopogon species using real-time PCR. Mol Ecol 16:881–890 doi:10.1111/j.1365-294X.2006.03191.x

    Article  PubMed  CAS  Google Scholar 

  • Kernaghan G, Widden P, Bergeron Y, Légaré S, Paré D (2003) Biotic and abiotic factors affecting ectomycorrhizal diversity in boreal mixed-woods. Oikos 102:497–504 doi:10.1034/j.1600-0706.2003.12415.x

    Article  Google Scholar 

  • Koide RT, Xu B, Sharda JN, Lekberg Y, Ostiguy N (2005) Evidence of species interactions within an ectomycorrhizal fungal community. New Phytol 165:305–316 doi:10.1111/j.1469-8137.2004.01216.x

    Article  PubMed  Google Scholar 

  • Koide RT, Shumway DL, Xu B, Sharda JN (2007) On temporal partitioning of a community of ectomycorrhizal fungi. New Phytol 174:420–429 doi:10.1111/j.1469-8137.2007.02000.x

    Article  PubMed  Google Scholar 

  • Lewis JD, Thomas RB, Strain BR (1994) Effect of elevated CO2 on mycorrhizal colonization of loblolly pine (Pinus taeda L.) seedlings. Plant Soil 165:81–88 doi:10.1007/BF00009965

    Article  CAS  Google Scholar 

  • Lilleskov EA, Hobbie EA, Fahey TJ (2002) Ectomycorrhizal fungal taxa differing in response to nitrogen deposition also differ in pure culture organic nitrogen use and natural abundance of nitrogen isotopes. New Phytol 154:219–231 doi:10.1046/j.1469-8137.2002.00367.x

    Article  CAS  Google Scholar 

  • Lilleskov EA, Bruns TD, Horton TR, Taylor DL, Grogan P (2004) Detection of forest stand-level spatial structure in ectomycorrhizal fungal communities. FEMS Microbiol Ecol 49:319–332 doi:10.1016/j.femsec.2004.04.004

    Article  CAS  PubMed  Google Scholar 

  • Massicotte HB, Molina R, Tackaberry LE, Smith JE, Amaranthus MP (1999) Diversity and host specificity of ectomycorrhizal fungi retrieved from three adjacent forest sites by five host species. Can J Bot 77:1053–1076 doi:10.1139/cjb-77-8-1053

    Article  Google Scholar 

  • McCune B, Mefford MJ (1999) Multivariate analysis of ecological data, version 4.25. Gleneden Beach, OR, USA: MJM Software

  • McHugh TA, Gehring CA (2006) Belowground interactions with arbuscular mycorrhizal shrubs decrease the performance of pinyon pine and the abundance of its ectomycorrhizas. New Phytol 171:171–178 doi:10.1111/j.1469-8137.2006.01735.x

    Article  PubMed  Google Scholar 

  • Michelsen A, Schmidt IK, Jonasson S, Dighton J, Jones HE, Callaghan TV (1995) Inhibition of growth, and nutrient uptake of arctic graminoids by leaf-extracts—allelopathy or resource competition between plants and microbes. Oecologia 102:407–418 doi:10.1007/BF00328678

    Article  Google Scholar 

  • Molina R, Massicotte H, Trappe JM (1992) Specificity phenomena in mycorrhizal symbiosis: community–ecological consequences and practical implications. In: Allen MF (ed) Mycorrhizal functioning: an integrated plant–fungal process. Chapman and Hall, London, pp 357–423

    Google Scholar 

  • Mueller RC, Gehring CA (2006) Interactions between an above-ground plant parasite and below-ground ectomycorrhizal fungal communities on pinyon pine. J Ecol 94:276–284 doi:10.1111/j.1365-2745.2006.01105.x

    Article  Google Scholar 

  • Mueller RC, Scudder CM, Porter ME, Trotter RT III, Gehring CA, Whitham TG (2005) Differential mortality of pinyon pine in response to severe drought: evidence for long-term vegetation shifts. J Ecol 93:1085–1093 doi:10.1111/j.1365-2745.2005.01042.x

    Article  Google Scholar 

  • Nantel P, Neumann P (1992) Ecology of ectomycorrhizal–basidiomycete communities on a local vegetation gradient. Ecology 73:99–117 doi:10.2307/1938724

    Article  Google Scholar 

  • Nara K (2006a) Pioneer dwarf willow may facilitate tree succession by providing late colonizers with compatible ectomycorrhizal fungi in a primary successional volcanic desert. New Phytol 171:187–198 doi:10.1111/j.1469-8137.2006.01744.x

    Article  PubMed  Google Scholar 

  • Nara K (2006b) Ectomycorrhizal networks and seedling establishment during early primary succession. New Phytol 169:169–178 doi:10.1111/j.1469-8137.2005.01545.x

    Article  PubMed  CAS  Google Scholar 

  • Newton AC, Haigh JM (1998) Diversity of ectomycorrhizal fungi in Britain: a test of the species–area relationship, and the role of host specificity. New Phytol 138:619–627 doi:10.1046/j.1469-8137.1998.00143.x

    Article  Google Scholar 

  • Nilsson MC, Hogberg P, Zackrisson O, Fengyou W (1993) Allelopathic effects by Empetrum hermaphroditum on development and nitrogen uptake by roots and mycorrhizae of Pinus sylvestris. Can J Bot 71:620–628

    Google Scholar 

  • Parke JL, Linderman RG, Black CH (1983) The role of ectomycorrhizas in drought tolerance of Douglas-fir seedlings. New Phytol 95:83–95 doi:10.1111/j.1469-8137.1983.tb03471.x

    Article  Google Scholar 

  • Richard F, Millot S, Gardes M, Selosse MA (2005) Diversity and specificity of ectomycorrhizal fungi retrieved from an old-growth Mediterranean forest dominated by Quercus ilex. New Phytol 166:1011–1023 doi:10.1111/j.1469-8137.2005.01382.x

    Article  PubMed  CAS  Google Scholar 

  • Seager R, Ting MF, Held IM, Kushnir Y, Lu J, Vecchi G et al (2007) Model projections of an imminent transition to a more arid climate in southwestern North America. Science 316:1181–1184 doi:10.1126/science.1139601

    Article  PubMed  CAS  Google Scholar 

  • Simard SW, Durall DM (2004) Mycorrhizal networks: a review of their extent, function and importance. Can J Bot 82:1140–1165 doi:10.1139/b04-116

    Article  CAS  Google Scholar 

  • Simard SW, Perry DA, Jones MD, Myrold DD, Durall DM, Molina R (1997) Net transfer of carbon between ectomycorrhizal tree species in the field. Nature 388:579–582 doi:10.1038/41557

    Article  CAS  Google Scholar 

  • Smith SE, Read DJ (1997) Mycorrhizal symbiosis, 2nd edn. Academic, London

    Google Scholar 

  • Smith JE, McKay D, Niwa CG, Thies WG, Brenner G, Spatafora JW (2004) Short-term effects of seasonal prescribed burning on the ectomycorrhizal fungal community and fine root biomass in ponderosa pine stands in the Blue Mountains of Oregon. Can J For Res 34:2477–2491 doi:10.1139/x04-124

    Article  CAS  Google Scholar 

  • Swaty RL, Gehring CA, van Ert M, Theimer TC, Keim P, Whitham TG (1998) Temporal variation in temperature and rainfall differentially affects ectomycorrhizal colonization at two contrasting sites. New Phytol 139:733–739 doi:10.1046/j.1469-8137.1998.00234.x

    Article  Google Scholar 

  • Swaty RL, Deckert RJ, Whitham TG, Gehring CA (2004) Ectomycorrhizal abundance and community composition shifts with drought: predictions from tree rings. Ecology 85:1072–1084 doi:10.1890/03-0224

    Article  Google Scholar 

  • Taylor DL, Bruns TD (1999) Community structure of ectomycorrhizal fungi in a Pinus muricata forest: minimal overlap between the mature forest and resistant propagule communities. Mol Ecol 8:1837–1850 doi:10.1046/j.1365-294x.1999.00773.x

    Article  PubMed  CAS  Google Scholar 

  • Urcelay C, Bret-Harte MS, Díaz S, Chapin FS (2003) Mycorrhizal colonization mediated by species interactions in arctic tundra. Oecologia 137:399–404 doi:10.1007/s00442-003-1349-6

    Article  PubMed  Google Scholar 

  • West NE (1999) Distribution, composition, and classification of current juniper–pinon woodlands and savannas across western North America. In: Monsen SB, Stevens R (eds) Ecology and management of pinon–juniper communities within the interior West. USDA, Forest Service, Rocky Mountain Research Station, Ogden, UT, pp 20–23

    Google Scholar 

Download references

Acknowledgments

We thank K. Haskins, J.S. Temkin, A. Stone, and A. Owen for help with field work, the U.S. Forest Service and Sunset Crater National Monument for access to field sites, A. Stone for assistance with statistical analysis, G. Nelson for help in the laboratory, and N. Johnson, T. Whitham, S. Neal, A. Antoninka, Z. Kovacs, J. Lamit, G. Hitzroth, and the Gehring lab group for comments on the manuscript. Funding for this project was provided by NSF grants DEB0415563 and DEB0236204, and the Graduate College of Northern Arizona University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Catherine A. Gehring.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hubert, N.A., Gehring, C.A. Neighboring trees affect ectomycorrhizal fungal community composition in a woodland-forest ecotone. Mycorrhiza 18, 363–374 (2008). https://doi.org/10.1007/s00572-008-0185-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00572-008-0185-2

Keywords

Navigation