Skip to main content
Log in

Spatial distribution of ectomycorrhizal Basidiomycete Russula subsect. Foetentinae populations in a primary dipterocarp rainforest

  • Short Note
  • Published:
Mycorrhiza Aims and scope Submit manuscript

Abstract

The spatial distribution of basidiocarps of the ectomycorrhizal Basidiomycete Russula subsect. Foetentinae was assessed in a primary forest in the Western Ghâts (India) dominated by the ectomycorrhizal tree species Vateria indica and Dipterocarpus indicus. Over a 7,700-m2 sampling area, both trees and basidiocarps of Russula subsect. Foetentinae were mapped during the first month of the 2002 rainy season. First-order spatial analysis revealed that the distribution of the 45 collected carpophores was highly aggregated, with 60% of all basidiocarps located at a distance lower than 1 m from the nearest one. The genetic structure of the Russula subsect. Foetentinae population was studied by inter-simple sequence repeat polymorphism analysis using three primers. Eighteen of the 45 genotypes were represented by single basidiocarps. Twenty-seven basidiocarps were identified as belonging to 11 genets or separated ramets. Five genets were small, with diameters ranging from 0.5 to 5 m. The six others were large, with a diameter ranging from 31 m to a maximum measured distance of 70 m. In spite of the lack of data concerning the reproductive biology of this species, the presence of large genets suggests that mature stands may shelter well-spread underground mycelium, crucial for durable interaction with plant partner.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Alexander IJ, Högberg P (1986) Ectomycorrhizas of tropical angiosperms trees. New Phytol 102:541–549

    Article  Google Scholar 

  • Anderson IC, Chambers SM, Cairney JWG (1998) Use of molecular methods to estimate the size and distribution of mycelial individuals of the ectomycorrhizal Basidiomycete Pisolithus tinctorius. Mycol Res 102:295–300

    Article  Google Scholar 

  • Baar J, Ozinga WA, Kuyper TW (1994) Spatial distribution of Laccaria bicolor genets reflected by basidiocarps after removal of litter and humus layers in a Pinus sylvestris forest. Mycol Res 98:726–728

    Article  Google Scholar 

  • Béreau M, Gazel M, Garbaye J (1997) Mycorrhizal symbiosis in trees of the tropical rainforest of French Guiana. Can J Bot 75:711–716

    Article  Google Scholar 

  • Bergemann SE, Miller SL (2002) Size, distribution and persistence of genets in local populations of the late-stage ectomycorrhizal basidiomycete, Russula brevipes. New Phytol 156:313–320

    Article  CAS  Google Scholar 

  • Bonello P, Bruns TD, Gardes M (1998) Genetic structure of a natural population of the ectomycorrhizal fungus Suillus pungens. New Phytol 138:533–542

    Article  CAS  Google Scholar 

  • Bruns T, Tan J, Bidardondo M, Szarot T, Redecker D (2002) Survival for Suillus pungens and Amanita francheti ectomycorrhizal genets was rare or absent after a stand replacing wild fire. New Phytol 155:517–523

    Article  Google Scholar 

  • Burnett J (2003) Fungal populations and species. Oxford University Press, Oxford

    Google Scholar 

  • Buyck B, Thoen D, Walting R (1996) Ectomycorrhizal fungi of the Guinea–Congo region. Proc R Soc Edinb 104:313–333

    Google Scholar 

  • Dahlberg A (1997) Population ecology of Suillus variegatus in old Swedish Scots pine forests. Mycol Res 107:47–54

    Article  Google Scholar 

  • Dahlberg A, Stenlid J (1990) Population structure and dynamics in Suillus bovinus as indicated by spatial distribution of fungal clones. New Phytol 115:487–493

    Article  Google Scholar 

  • Dahlberg A, Stenlid J (1994) Size, distribution and biomass of genets in populations of Suillus bovinus (L.: Fr.) Roussel revealed by somatic incompatibility. New Phytol 128:225–234

    Article  Google Scholar 

  • Dahlberg A, Stenlid J (1995) Spatiotemporal patterns in ectomycorrhizal populations. Can J Bot 73:1222–1230

    Article  Google Scholar 

  • Dahlberg A, Jonsson L, Nylund JE (1997) Species diversity and distribution of biomass above and below-ground among ectomycorrhizal fungi in an old-growth Norway spruce forest in South Sweden. Can J Bot 75:1323–1335

    Article  Google Scholar 

  • Deacon JW, Fleming LV (1992) Interactions of ectomycorrhizal fungi. In: Allen MF (ed) Mycorrhizal functioning: an integrative plant–fungal process. Chapman & Hall, New York, pp 249–300

    Google Scholar 

  • Diggle PJ (1983) Statistical analyses of spatial point patterns. Academic, London, UK

    Google Scholar 

  • Finlay RD, Ek H, Odham G, Söderström B (1998) Mycelial uptake, translocation and assimilation of nitrogen from 15 N-labelled ammonium by Pinus sylvestris plants infected with four different ectomycorrhizal fungi. New Phytol 110:59–66

    Article  Google Scholar 

  • Fiore-Donno AM, Martin F (2001) Populations of ectomycorrhizal Laccaria amesthystina and Xerocomus spp. show contrasting colonization patterns in a mixed forest. New Phytol 152:533–542

    Article  CAS  Google Scholar 

  • Gardes M, Bruns TD (1996) Community structure of ectomycorrhizal fungi in a Pinus muricata forest: above and below-ground views. Can J Bot 74:1572–1583

    Article  Google Scholar 

  • Griffiths RP, Bradshaw GA, Marks B, Lienkaemper GW (1996) Spatial distribution of ectomycorrhizal mats in coniferous forests of the Pacific Northwest, USA. Plant Soil 180:147–158

    Article  CAS  Google Scholar 

  • Gryta H, Bebaud JC, Effosse A, Gay G, Marmeisse R (1997) Fine scale structure of populations of the ectomycorrhizal fungus Hebeloma cylindrosporum in coastal sand dune ecosystems. Mol Ecol 6:353–364

    Article  Google Scholar 

  • Hantula J, Dusabenyagasani M, Hamelin RC (1996) Random amplified microsatellites (RAMS), a novel method for characterizing genetic variation within fungi. Eur J For Pathol 26:159–166

    Article  Google Scholar 

  • Jonsson L, Kokalj S, Finlay R, Erland S (1999) Ectomycorrhizal community structure in a limed spruce forest. Mycol Res 103:501–508

    Article  Google Scholar 

  • Keizer PJ, Arnolds E (1994) Succession of ectomycorrhizal fungi in roadside verges planted with common oak (Quercus robur L.) in Drenthe, The Netherlands. Mycorrhiza 4:147–159

    Article  Google Scholar 

  • Kernaghan G, Currah RS, Bayer RJ (1997) Russulaceous ectomycorrhizae of Abies lasiocarpa and Picea engelmannii. Can J Bot 75:1843–1850

    Article  Google Scholar 

  • Kretzer AM, Dunham S, Molina R, Spatafora JW (2003) Microsatellite markers reveal the below ground distribution of genets in two species of Rhizopogon forming tuberculate ectomycorrhizas on Douglas fir. New Phytol 161:313–320

    Article  Google Scholar 

  • Lee SS, Alexander IJ (1994) The response of seedlings of two dipterocarp species to nutrient additions and ectomycorrhizal infection. Plant Soil 163:299–306

    Article  Google Scholar 

  • Lee SS, Alexander IJ, Watling R (1997) Ectomycorrhizas and putative ectomycorrhizal fungi of Shorea leprosula Miq. (Dipterocarpaceae). Mycorrhiza 7:63–81

    Article  Google Scholar 

  • Liang Yu, Liang-dong Guo, Ke-ping Ma (2004) Genetic structure of a population of the ectomycorrhizal fungus Russula vinosa in subtropical woodlands in southwest China. Mycorrhiza 14:235–240

    Article  CAS  PubMed  Google Scholar 

  • Loffeier ME (1989) Sylviculture et sylvigénèse en forêt sempervirente du Coorg (sud-ouest de l'Inde). Travaux de la section Scientifique et Technique, Tome XXVI, Institut Français de Pondichéry, Inde, p 211

  • Mason PA, Last FT, Wilson J, Deacon JW, Fleming LV, Fox FM (1987) Fruiting and succession of ectomycorrhizal fungi. In: Pegg GF, Ayres PG (eds) Fungal infection of plant. Cambridge University Press, Cambridge, pp 226–253

    Google Scholar 

  • Miller SL, Buyck B (2002) Molecular phylogeny of the genus Russula in Europe with a comparison of modern infrageneric classifications. Mycol Res 106:259–276

    Article  CAS  Google Scholar 

  • Onguene NA, Kuyper TW (2002) Importance of the ectomycorrhizal network for seedling survival and ectomycorrhiza formation in rain forests of South Cameroon. Mycorrhiza 12:13–17

    Article  CAS  PubMed  Google Scholar 

  • Pascal JP, Pélissier R (1996) Structure and floristic composition of a tropical evergreen forest in south-west India. J Trop Ecol 12:191–211

    Article  Google Scholar 

  • Perez-Moreno J, Read DJ (2000) Mobilization and transfer of nutrients from litter to tree seedlings via the vegetative mycelium of ectomycorrhizal plants. New Phytol 145:301–309

    Article  CAS  Google Scholar 

  • Redecker D, Szaro TM, Bowman RJ, Bruns TD (2001) Small genets of Lactarius xanthogalactus, Russula cremoricolor and Amanita francheti in late-stage ectomycorrhizal successions. Mol Ecol 10:1025–1034

    Article  CAS  PubMed  Google Scholar 

  • Richardson MJ (1970) Studies on Russula emetica and other agarics in a Scots pine plantation. Trans Br Mycol Soc 55:217–229

    Article  Google Scholar 

  • Sawyer NA, Chambers SM, Cairney JWG (1999) Molecular investigation of genet distribution and genetic variation of Cortinarius rotundisporus in eastern Australian sclerophyll forests. New Phytol 142:561–568

    Article  CAS  Google Scholar 

  • Smith SE, Read DJ (1997) Mycorrhizal symbiosis, 2nd edn. Cambridge University Press, London, p 605

    Google Scholar 

  • Smith ML, Bruhn JN, Anderson JB (1992) The fungus Armillaria bulbosa is among the largest and oldest living organisms. Nature 356:428–431

    Article  Google Scholar 

  • Smits WTM (1983) Dipterocarps and mycorrhiza, an ecological adaptation and a factor in forest regeneration. Flora Males Bull 36:3926–3937

    Google Scholar 

  • Watling R, Lee SS (1998) Ectomycorrhizal fungi associated with members of the Dipterocarpaceae in Peninsular Malaysia—II. J Trop For Sci 10:421–430

    Google Scholar 

  • White TJ, Bruns TD, Lee SS, Taylor JW (1990) Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. In: Innis MA, Gelf DH, Sninsky JJ, White TJ (eds) PCR protocols: a guide to methods and application. Academic, San Diego, pp 315–322

    Google Scholar 

  • Zhou Z, Miwa M, Hogetsu T (1999) Analysis of genetic structure of a Suillus grevillei population in a Larix kaempferi stand by polymorphism of inter-simple sequence repeat (ISSR). New Phytol 144:55–63

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors are grateful to anonymous reviewers for useful comments on a previous version of the manuscript and to Dr. D. McKey and Dr. B. Buyck for discussion and support. The authors also thank Dr. G. Senthilarasug and Dr. Kumaresan for fruitful collaboration and Konagu, Gauda, Obaya and Ragava for their technical assistance in the Uppangala forest field. This work was supported by a doctoral grant from the French Institute of Pondicherry to T.R.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Taiana Riviere.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Riviere, T., Natarajan, K. & Dreyfus, B. Spatial distribution of ectomycorrhizal Basidiomycete Russula subsect. Foetentinae populations in a primary dipterocarp rainforest. Mycorrhiza 16, 143–148 (2006). https://doi.org/10.1007/s00572-005-0019-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00572-005-0019-4

Keywords

Navigation