Skip to main content
Log in

A history of research on arbuscular mycorrhiza

  • Review
  • Published:
Mycorrhiza Aims and scope Submit manuscript

Abstract

This is not a review paper in the traditional sense, of which there are many. Three of the most influential reviews that summarized well some of the “older” literature include those by Nicolson (1967), Gerdemann (1968) and Mosse (1973). Instead, in this brief and incomplete work, we attempt to show the historical development of research on arbuscular mycorrhizas. We owe much to those who have written other historical accounts, including Rayner (1926–1927), Trappe and Berch (1985), Mosse (1985), Schenck (1985), Harley (1991) and Allen (1996), but the contents of this work naturally reflect our own ignorance, interests and biases. It was often difficult to distinguish between the historical and the contemporary, and we did not use any specific cutoff date in making this distinction. The degree to which we include “contemporary” literature was determined by our own assessment of its connectedness to older literature. In any case, we hope this will be of some interest to those of you who study the arbuscular mycorrhiza, and that it will serve the purpose of providing what we consider to be an important historical context for current researchers. We wish you good fortune in your research.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Abbott LK, Robson AD (1982) The role of vesicular arbuscular mycorrhizal fungi in agriculture and the selection of fungi for inoculation. Aust J Agric Res 33:389–408

    Google Scholar 

  • Abbott LK, Robson AD (1984) The effect of VA mycorrhizae on plant growth. In: Powell CL, Bagyaraj DJ (eds) VA Mycorrhiza. CRC Press, Boca Raton, Fla., pp 113–130

  • Abbott LK, Robson AD, Hall IR (1983) Introduction of vesicular arbuscular mycorrhizal fungi into agricultural soils. Aust J Agric Res 34:741–749

    Google Scholar 

  • Addy HD, Schaffer GF, Miller MH, Peterson RL (1994) Survival of the extraradical mycelium of a VAM fungus in frozen soil over winter. Mycorrhiza 5:1–5

    Article  Google Scholar 

  • Adholeya A (2003) Commercial production of AMF through industrial mode and its large scale application. In: Abstracts, 4th International Conference on Mycorrhizae. Montreal, Canada, p 240

  • Aldwell FEB, Hall IR (1987) A review of serological techniques for the identification of mycorrhizal fungi. In: Sylvia DM, Hung LL, Graham JH (eds) Mycorrhizae in the next decade. Practical applications and research priorities. Proceedings of the 7th North American Conference on Mycorrhizae, Institute of Food and Agricultural Sciences, University of Florida, Gainesville, Fla., pp 305–307

  • Allen MF (1996) The ecology of arbuscular mycorrhizas: a look back into the 20th century and a peek into the 21st. Mycol Res 100:769–782

    Google Scholar 

  • Allen MF, Allen EB, Friese CF (1989) Responses of the non-mycotrophic plant Salsola kali to invasion by vesicular-arbuscular mycorrhizal fungi. New Phytol 111:45–49

    Google Scholar 

  • Anderson RC, Liberta AE (1985) VAM spore abundance and diversity in an Illinois corn field and adjacent tallgrass prairie. In: Molina R (ed) Proceedings of the 6th North American conference on Mycorrhizae, Forest Research Laboratory, Oregon State University, Corvallis, Ore., p 281

  • Asai T (1943) Die Bedeutung der mycorrhiza für das Pflanzenleben. Jpn J Bot 12:359–436

    Google Scholar 

  • Asai T (1944) Über die Mykorrhizenbildung der leguminosen Pflanzen. Jpn J Bot 13:463

    Google Scholar 

  • Azcón-Aguilar C, Barea JM (1992) Interactions between mycorrhizal fungi and other rhizosphere microorganisms. In: Allen MF (ed) Mycorrhizal functioning. Chapman and Hall, New York, pp 163–198

  • Azcón-Aguilar C, Barea JM (1996a) Mycorrhizas in integrated systems from genes to plant development. Proceedings of the fourth European symposium on mycorrhizas. European Commission, Brussels

  • Azcón-Aguilar C, Barea JM (1996b) Arbuscular mycorrhizas and biological control of soil-borne pathogens—an overview of mechanisms involved. Mycorrhiza 6:457–464

    Article  Google Scholar 

  • Baltruschat H, Schönbeck F (1972) The influence of endotrophic mycorrhiza on the infestation of tobacco by Thielaviopsis basicola. Phytopathol Z 84:171–188

    Google Scholar 

  • Barea JM, Azcón-Aguilar C, AzcónR (1988) The role of mycorrhiza in improving the establishment and function of the Rhizobium-legume system under field conditions. In: Beck DP, Materon LA (eds) Nitrogen fixation by legumes in Mediterranean agriculture. Nijhof, Dordrecht

  • Barrett JT (1961) Isolation, culture, and host relation of the phycomycetoid vesicular-arbuscular mycorrhizal endophyte Rhizophagus. Recent Adv Bot 2:1725–1727

    Google Scholar 

  • Baylis GTS (1959) Effect of vesicular-arbuscular mycorrhizas on growth of Griselinia littoralis (Cornaceae) New Phytol 58:274

  • Baylis GTS (1970) Root hairs and phycomycetous mycorrhizas in phosphorus-deficient soil. Plant Soil 33:713–716

    Google Scholar 

  • Baylis GTS (1972a) Fungi, phosphorus and the evolution of root systems. Search 3:257–259

    Google Scholar 

  • Baylis GTS (1972b) Minimum levels of available phosphorus for non-mycorrhizal plants. Plant Soil 36:233–234

    Google Scholar 

  • Bécard G, Fortin JA (1988) Early events of vesicular-arbuscular mycorrhiza formation on Ri T-DNA transformed roots. New Phytol 108:211–218

    Google Scholar 

  • Bécard G, Piché Y (1989a) New aspects on the acquisition of biotrophic status by a vesicular-arbuscular mycorrhizal fungus, Gigaspora margarita. New Phytol 112:77–83

    Google Scholar 

  • Bécard G, Piché Y (1989b) Fungal growth stimulation by CO2 and root exudates in vesicular-arbuscular mycorrhizal symbiosis. Appl Environ Microbiol 55:2320–2325

    Google Scholar 

  • Bécard G, Douds DD, Pfeffer PE (1992) Extensive in vitro hyphal growth of vesicular-arbuscular mycorrhizal fungi in the presence of CO2 and flavonols. Appl Environ Microbiol 58:821–825

    Google Scholar 

  • Bentivenga SP, Morton JB (1994) Stability and heritability of fatty acid methyl ester profiles of glomalean endomycorrhizal fungi. Mycol Res 98:1419–1426

    CAS  Google Scholar 

  • Berta G, Fusconi A, Trotta A, Scannerini S (1990) Morphogenetic modifications induced by the mycorrhizal fungus Glomus strain E3 on the root system of Allium porrum L. New Phytol 114:207–216

    Google Scholar 

  • Berta G, Tagliasacchi AM, Fusconi A, Gerlero D, Trotta A, Scannerini S (1991) The mitotic cycle in root apical meristem of Allium porrum L. is controlled by the endomycorrhizal fungus Glomus sp. strain E3. Protoplasma 161:12–16

    Google Scholar 

  • Bertrand D (1972) Interactions entre elements minereaux et microorganisms du sol. Rev Ecol Biol Sol 9:349–396

    CAS  Google Scholar 

  • Besmer YL, Koide RT (1999) Effect of mycorrhizal colonization and phosphorus on ethylene production by snapdragon (Antirrhinum majus L.) flowers. Mycorrhiza 9:161–166

    Article  CAS  Google Scholar 

  • Bethlenfalvay GJ, Schüepp H (1994) Arbuscular mycorrhizas and agrosystem stability. In: Gianinazzi S, Schüepp H (eds) Impact of arbuscular mycorrhizas on sustainable agriculture and natural ecosystems. Birkhäuser, Basel

  • Bevege DI (1968) A rapid technique for clearing tannins and staining intact roots for detection of mycorrhizas caused by Endogone spp., and some records of colonization in Australasian plants. Trans Br Mycol Soc 51:808–810

    Google Scholar 

  • Bever JD, Morton JB, Antonovics J, Schultz PA (1996) Host-dependent sporulation and species diversity of arbuscular mycorrhiza fungi in a mown grassland. J Ecol 84:71–82

    Google Scholar 

  • Bever JD, Pringle A, Schultz PA (2002) Dynamics within the plant-arbuscular mycorrhizal fungal mutualism: testing the nature of community feedback. In: van der Heijden MGA, Sanders IR (eds) Mycorrhizal ecology. Springer, Berlin Heidelberg New York, pp 267–292

  • Bianciotto V, Bonfante P (1992) DNA content of vesicular-arbuscular mycorrhizal fungal spores. Mycologia 82:263–267

    Google Scholar 

  • Bianciotto V, Bandi C, Minerdi D, Sironi M, Ticky HV, Bonfante P (1996) An obligately endosymbiotic mycorrhizal fungus itself harbors obligately intracellular bacteria. Appl Environ Microbiol 62:3005–3010

    CAS  PubMed  Google Scholar 

  • Bianciotto V, Lumini E, Bonfante P, Vandamme P (2003) ‘Candidatus Glomeribacter gigasporarum’ gen. Nov., sp. nov., an endosymbiont of arbuscular mycorrhizal fungi. Int J Syst Evol Microbiol 53:121–124

    Article  CAS  PubMed  Google Scholar 

  • Bieleski RL (1973) Phosphate pools, phosphate transport and phosphate availability. Annu Rev Plant Physiol 24:225–252

    CAS  Google Scholar 

  • Biermann B, Linderman RG (1983) Effect of container plant growth medium and fertilizer phosphorus on establishment and host growth response to vesicular-arbuscular mycorrhizae. J Am Soc Hortic Sci 108:962–971

    Google Scholar 

  • Blackman VH (1903) Some recent observations on mycorhiza. New Phytol 2:23–24

    Google Scholar 

  • Bonfante P (1991) Biologia delle micorrize nel Centro di Studio sulla Micologia: il passata, il presente e il futuro. In: Estratto da Funghi, Piante e Suolo. Quarat’anni di ricerche del Centro di Studio sulla Micologia del Terreno nel centenario della nascita del suo fondatore Beniamino Peyronel. Centro di Studio sulla Micologia del Terreno, CNR, Torino, pp 135–156

  • Bonfante-Fasolo P, Vian B (1989) Cell wall architecture in mycorrhizal roots of Allium porrum L. Ann Sci Nat 10:97–109

    Google Scholar 

  • Boullard B (1982) Brève réponse à une question: que recouvre la notion de mycorhize? In: Gianinazzi S, Gianinazzi-Pearson V, Trouvelot A (eds) Les mycorhizes, partie intégrante de la plant: biologie et perspectives d’utilisation. INRA, Paris, pp 15–21

  • Bowen GD, Rovira AD (1968) The influence of micro-organisms on growth and metabolism on plant roots. In: Wittington WJ (ed) Root growth. Butterworth, London, pp 170–199

  • Brundrett M, Kendrick B (1990a) The roots and mycorrhizas of herbaceous woodland plants. I. Quantitative aspects of morphology. New Phytol 114:457–468

    Google Scholar 

  • Brundrett M, Kendrick B (1990b) The roots and mycorrhizas of herbaceous woodland plants. II. Structural aspects of morphology. New Phytol 114:469–480

    Google Scholar 

  • Brundrett M, Melville L, Peterson L (1994) Practical methods in mycorrhiza research. Mycologue, Sydney, B.C., Canada

  • Brundrett M, Bougher N, Dell B, Grove T, Malajczuk N (1996) Working with mycorrhizas in forestry and agriculture. Australian Centre for International Agricultural Research, Canberra, ACT, Australia

  • Bucholtz F (1912) Beiträge zur Kenntnis der Gattung Endogone Link. Beih Bot Zbl 29:147–225

    Google Scholar 

  • Burges A (1936) On the significance of mycorrhiza. New Phytol 35:117–131

    Google Scholar 

  • Butler EJ (1939) The occurrences and systematic position of the vesicular-arbuscular type of mycorrhizal fungi. Trans Br Mycol Soc 22:274–301

    Google Scholar 

  • Callow JA, Capaccio LCM, Parish G, Tinker PB (1978) Detection and estimation of polyphosphate in vesicular-arbuscular mycorrhizas. New Phytol 80:125–134

    CAS  Google Scholar 

  • Carey PD, Fitter AH, Watkinson AR (1992) A field study using the fungicide benomyl to investigate the effect of mycorrhizal fungi on plant fitness. Oecologia 90:550–555

    Google Scholar 

  • Chabot S, Bel-rhlid R, Chênevert R, Piché Y (1992) Hyphal growth promotion in vitro of the VA mycorrhizal fungus, Gigaspora margarita Becker & Hall, by the activity of structurally specific flavonoid compounds under CO2-enriched conditions. New Phytol 122:461–467

    CAS  Google Scholar 

  • Chou LG, Schmitthenner AF (1974) Effect of Rhizobium japonicum and Endogone mosseae on soybean root rot caused by Pythium ultimum and Phytophthora megasperma var. sojae. Plant Dis Rep 58:221–225

    Google Scholar 

  • Clark FB (1963) Endotrophic mycorrhizae influence yellow poplar seedling growth. Science 140:1220–1221

    Google Scholar 

  • Clark FB (1964) Micro-organisms and soil structure affect yellow poplar growth. United States Forest Service Research Paper CS-9, Columbus, Ohio

  • Clough KS, Sutton JC (1976) Direct observation of fungal aggregates in sand-dune soil. Can J Microbiol 24:326–333

    Google Scholar 

  • Cooper KM, Grandison GS (1986) Interaction of vesicular-arbuscular mycorrhizal fungi and root-knot nematode on cultivars of tomato and white clover susceptible to Meloidogyne hapla. Ann Appl Biol 108:555–565

    Google Scholar 

  • Cooper KM, Tinker PB (1981) Translocation and transfer of nutrients in vesicular-arbuscular mycorrhizas. IV. Effect of environmental variables on movement of phosphorus. New Phytol 88:327–339

    CAS  Google Scholar 

  • Cox GC, Sanders FET (1974) Ultrastructure of the host-fungus interface in a vesicular-arbuscular mycorrhiza. New Phytol 73:901–912

    Google Scholar 

  • Cox G, Tinker PB (1976) Translocation and transfer of nutrients in vesicular-arbuscular mycorrhizas. I. The arbuscule and phosphorus transfer: a quantitative ultrastructural study. New Phytol 77:371–378

    CAS  Google Scholar 

  • Cox G, Sanders FE, Tinker PB, Wild JA (1975) Ultrastructural evidence relating to host-entophyte transfer in a vesicular-arbuscular mycorrhiza. In: Sanders FE, Mosse B, Tinker PB (eds) Endomycorrhizas, Proceedings of a Symposium held at the University of Leeds, 22–25 July 1974. Academic Press, London

  • Cox G, Moran KJ, Sanders F, Nockolds C, Tinker PB (1980) Translocation and transfer of nutrients in vesicular-arbuscular mycorrhizas. III. Polyphosphate granules and phosphorus translocation. New Phytol 84:649–659

    CAS  Google Scholar 

  • Crush JR (1974) Plant growth responses to vesicular-arbuscular mycorrhiza. VII. Growth and nodulation of some herbage legumes. New Phytol 73:743–749

    CAS  Google Scholar 

  • Cummings BA (1990) Use of RFLPs as a means of examining genetic relatedness in VAM fungi. In: Allen MF, Williams SE (eds) Abstracts, 8th North American Conference on Mycorrhizae. University of Wyoming Agricultural Experiment Station, Laramie, Wyo., p 63

  • Daft MJ, El-Giahmi AA (1974) Effect of Endogone mycorrhiza on plant growth. VII. Influence of infection on the growth and nodulation in French bean (Phaseolus vulgaris). New Phytol 73:1139–1147

    Google Scholar 

  • Daft MJ, Nicolson TH (1966) Effect of Endogone mycorrhiza on plant growth. New Phytol 65:342–350

    Google Scholar 

  • Daft MJ, Nicolson TH (1969) Effect of Endogone mycorrhiza on plant growth. II. Influence of soluble phosphate on endophyte and host in maize. New Phytol 68:945–952

    CAS  Google Scholar 

  • Dangeard PA (1896) Une maladie du peuplier dans l’ouest de la France. Botaniste 58:38–43

    Google Scholar 

  • Dangeard PA (1900) Le Rhizophagus populinus. Botaniste 7:285–287

    Google Scholar 

  • Davidson K, Geringer JE (1990) Genetic studies of vesicular-arbuscular mycorrhizal fungi. In: Allen MF, Williams SE (eds) Abstracts, 8th North American Conference on Mycorrhizae. University of Wyoming Agricultural Experiment Station, Laramie, Wyo., p 70

  • Dehn B, Dehne H-W (1985) Development of VA mycorrhizal fungi and interactions with Cochliobolus sativus in roots of Graminae. In: Gianinazzi-Pearson V, Gianinazzi S (eds) Physiological and genetical aspects of mycorrhizae. INRA, Paris

  • Dehne H-W (1982) Interaction between vesicular-arbuscular mycorrhizal fungi and plant pathogens. Phytopathology 72:1115–1119

    Google Scholar 

  • Dehne H-W, Schoenbeck F (1979) The influence of endotrophic mycorrhiza on plant diseases. 1. Colonization of tomato plants by Fusarium oxysporum F. sp. lycopersici. Phytopathol Z 95:105–110

    Google Scholar 

  • Dehne H-W, Backhaus GF, Baltruschat H (1987) Inoculation of plants with VA mycorrhizal fungi at inorganic carrier materials. In: Sylvia DM, Hung LL, Graham JH (eds) Mycorrhizae in the next decade, practical applications and research priorities. Proceedings of the 7th North American conference on mycorrhiza. Institute of Food an Agricultural Sciences, University of Florida, Gainesville, Fla., pp 272–273

  • Demeter K (1923) Ueber “Plasmotypsen” mycorrhiza. Flora 116:405–456

    Google Scholar 

  • Dodd JC, Jeffries P (1986) Early development of vesicular-arbuscular mycorrhizas in autumn sown cereals. Soil Biol Biochem 8:149–154

    Article  Google Scholar 

  • Duc G, Trouvelot A, Gianinazzi-Pearson V, Gianinazzi S (1989) First report of non-mycorrhizal plant mutants (Myc) obtained in pea (Pisum sativum L.) and fababean (Vicia faba L.) Plant Sci 60:215–222

    Google Scholar 

  • Elmer WH (2002) Influence of formononetin and NaCl on mycorrhizal colonization and fusarium crown and root rot of asparagus. Plant Dis 86:1318–1324

    CAS  Google Scholar 

  • Fitter AH (1977) Influence of mycorrhizal infection on competition for phosphorus and potassium by two grasses. New Phytol 79:119–125

    CAS  Google Scholar 

  • Fitter AH (1986) Effect of benomyl on leaf phosphorus concentration in alpine grasslands: a test of mycorrhizal benefit. New Phytol 103:767–776

    CAS  Google Scholar 

  • Fitter AH, Sanders IR (1992) Interactions with soil fauna. In: Allen MF (ed) Mycorrhizal functioning. Chapman and Hall, New York, pp 333–356

  • Fortin JA, Bécard G, Declerck S, Dalpé Y, St-Arnaud M, Coughlan AP, Piché Y (2002) Arbuscular mycorrhiza on root-organ cultures. Can J Bot 80:1–20

    Article  CAS  Google Scholar 

  • Fox JA, Spasoff L (1972) Interaction of Heterodera solanacearum and Endogone gigantea on tobacco. J Nematol 4:224–225

    Google Scholar 

  • France RC, Coleman MD, Cline ML (1985) Cover crops to increase inoculum in the field. In: Molina R (ed) Proceedings of the 6th North American conference on Mycorrhizae. Forest Research Laboratory, Oregon State University, Corvallis, Ore., pp 92–94

  • Francis R, Read DJ (1984) The contributions of mycorrhizal fungi to the determination of plant community structure. In: Robson AD, Abbott LK, Malajczuk N (eds) Management of mycorrhizas in agriculture, horticulture and forestry. Kluwer, Dordrecht

  • Francis R, Read DJ (1985) Mutualism and antagonism in the mycorrhizal symbiosis, with special reference to impacts on plant community structure. Can J Bot 73:S1301–S1309

    Google Scholar 

  • Frank AB (1885) Ueber die auf Wurzelsymbiose beruhende Ernährung gewisser Baüme durch unterirdische Pilze. Ber Dtsch Bot Ges 3:128–145

    Google Scholar 

  • Frank AB (1887) Ueber neue Mycorrhiza-formen. Ber Dtsch Bot Ges 5:395–409

    Google Scholar 

  • Franke-Snyder M, Douds DD Jr, Galvez L, Phillips JG, Wagoner P, Drinkwater L, Morton JB (2001) Diversity of communities of arbuscular mycorrhizal (AM) fungi present in conventional versus low-input agricultural sites in eastern Pennsylvania, USA. Appl Soil Ecol 16:35–48

    Article  Google Scholar 

  • Fries EM (1849) Summa Vegetabilium Scandinaveae 2:261–572

    Google Scholar 

  • Furlan V (1993) Large scale application of endomycorrhizal fungi and technology transfer to the farmer. In: Peterson L, Schelkle M (eds) Abstracts, 9th NACOM, Guelph, Ontario, Canada, p 77

  • Furlan V, Fortin J-A (1973) Formation of endomycorrhizae by Endogone calospora on Allium cepa under three temperature regimes. Nat Can 100:467–477

    Google Scholar 

  • Gallaud J (1905) Étude sur les mycorrhizes endotrophes. Rev Gén Bot 17:5–48, 66–83, 123–136, 223–249, 313–325, 425–433, 479–500

    Google Scholar 

  • Galvez L, Douds DD Jr, Wagoner P, Longnecker LR, Drinkwater LE, Janke RR (1995) An overwintering cover crop increases inoculum of VAM fungi in agricultural soil. Am J Alternative Agric 10:152–156

    Google Scholar 

  • Gange AC, Brown VK, Farmer LM (1990) A test of mycorrhizal benefit in an early successional plant community. New Phytol 115:85–91

    Google Scholar 

  • Gerdemann JW (1955a) Relation of a large soil-borne spore to phycomycetous mycorrhizal infections. Mycologia 47:619–632

    Google Scholar 

  • Gerdemann JW (1955b) Wound healing of hyphae in a phycomycetous mycorrhizal fungus. Mycologia 47:916–918

    Google Scholar 

  • Gerdemann JW (1961) A species of Endogone from corn causing vesicular-arbuscular causing vesicular-arbuscular mycorrhiza. Mycologia 53:254–261

    Google Scholar 

  • Gerdemann JW (1964) The effect of mycorrhiza on the growth of maize. Mycologia 56:342–349

    Google Scholar 

  • Gerdemann JW (1965) Vesicular-arbuscular mycorrhizae formed on maize and tuliptree by Endogone fasciculata. Mycologia 57:562–575

    Google Scholar 

  • Gerdemann JW (1968) Vesicular-arbuscular mycorrhizae and plant growth. Annu Rev Phytopathol 6:397–418

    Article  Google Scholar 

  • Gerdemann JW (1971) Fungi that form the vesicular-arbuscular type of endomycorrhiza. In: Hacskaylo E (ed), Mycorrhizae, Proceedings of the first north American conference on mycorrhizae. USDA Misc Publ 1189, pp 9–18

  • Gerdemann JW, Nicolson TH (1962) Endogone spores in cultivated soils. Nature 195:308–309

    Google Scholar 

  • Gerdemann JW, Nicolson TH (1963) Spores of mycorrhizal Endogone species extracted from soil by wet sieving and decanting. Trans Br Mycol Soc 46:235–244

    Google Scholar 

  • Gerdemann JW, Trappe JM (1974) The Endogonaceae in the Pacific Northwest. The New York Botanical Garden, New York

  • Gianinazzi S, Schüepp H (1994) Impact of arbuscular mycorrhizas on sustainable agriculture and natural ecosystems. Advances in Life Sciences. Birkhaüser, Basel

  • Gianinazzi S, Gianinazzi-Pearson V, Dexheimer J (1979) Enzymatic studies on the metabolism of vesicular-arbuscular mycorrhiza. III. Ultrastructural localization of acid and alkaline phosphatase in onion roots infected with Glomus mosseae (Nicol. & Gerd.) New Phytol 82:127–132

    Google Scholar 

  • Gianinazzi S, Schüepp H, Barea JM, Haselwandter K (2002) Mycorrhizal technology in agriculture. From genes to bioproducts. Birkhaüser, Basel

  • Gianinazzi-Pearson V, Gianinazzi S (1986) Physiological and genetical aspects of mycorrhizae. Proceedings of the 1st European symposium on mycorrhizae. INRA, Paris

  • Gianinazzi-Pearson V, Branzanti B, Gianinazzi S (1989) In vitro enhancement of spore germination and early hyphal growth of a vesicular-arbuscular mycorrhizal fungus by host root exudates and plant flavonoids. Symbiosis 7:243–255

    CAS  Google Scholar 

  • Gianinazzi-Pearson V, Smith SE, Gianinazzi S, Smith FA (1991) Enzymatic studies on the metabolism of vesicular-arbuscular mycorrhiza. V. Is H+-ATPase a component of ATP-hydrolysing enzyme activities in plant-fungus interfaces? New Phytol 117:61–67

    CAS  Google Scholar 

  • Gianinazzi-Pearson, Arnould C, Oufattole M, Arango M, Gianinazzi S (2000) Differential activation of H+-ATPase genes by an arbuscular mycorrhizal funugs in root cells of transgenic tobacco. Planta 211:609–613

    CAS  PubMed  Google Scholar 

  • Gilmore AE (1968) Phycomycetous mycorrhizal organisms collected by open-pot culture methods. Hilgardia 39:87–105

    Google Scholar 

  • Gilmore AE (1971) The influence of endotrophic mycorrhizae on the growth of peach seedlings. J Am Soc Hortic Sci 96:35

    Google Scholar 

  • Giovannetti M, Mosse B (1980) An evaluation of techniques for measuring vesicular arbuscular mycorrhizal infection in roots. New Phytol 84:489–500

    Google Scholar 

  • Giovannetti M, Sbrana C (2001) Self and non-self responses in hyphal tips of arbuscular mycorrhizal fungi. In: Geitmann A (ed), Cell biology of plant and fungal tip growth. IOS, Amsterdam

  • Giovannetti M, Fortuna P, Citernesi AS, Morini S, Nuti MP (2001) The occurrence of anastomosis formation and nuclear exchange in intact arbuscular mycorrhizal networks. New Phytol 151:717–724

    Article  Google Scholar 

  • Godfrey RM (1957) Studies on British species of Endogone. III. Germination of spores. Trans Br Mycol Soc 40:203–210

    Google Scholar 

  • Graham JH (1986) Citrus mycorrhizae: potential benefits and interactions with pathogens. Hortic Sci 21:1302–1306

    Google Scholar 

  • Gray LE (1964) Endotrophic mycorrhizae on trees and field crops. MSc Thesis, University of Illinois, Urbana, Ill.

  • Grime JP, Mackey JML, Hillier SH, Read DJ (1987) Floristic diversity in a model system using experimental microcosms. Nature 328:420–422

    Article  Google Scholar 

  • Hacskaylo E (ed) (1971) Mycorrhizae, proceedings of the first north American conference on mycorrhizae. USDA Misc Publ 1189

  • Hall IR (1978) Effects of endomycorrhizas on the competitive ability of white clover. N Z J Agric Res 21:509–515

    Google Scholar 

  • Harley JL (1950) Recent progress in the study of endotrophic mycorrhiza. New Phytol 49:213–247

    Google Scholar 

  • Harley JL (1959) The biology of mycorrhiza. Leonard Hill, London

  • Harley JL (1969) The biology of mycorrhiza, 2nd edn. Leonard Hill, London

  • Harley JL (1991) The history of research on mycorrhiza and the part played by Professor Beniamino Peyronel. In: Estratto da Funghi, Piante e Suolo, Quarat’anni di ricerche del centro di Studio sulla Micologia del Terreno nel centenario della nascita del suo fondatore Beniamino Peyronel. Centro di Studio sulla Micologia del Terreno, CNR, Torino, pp 31–73

  • Harley JL, Smith SE (1983) Mycorrhizal symbiosis. Academic Press, London

  • Harrison MJ, Dewbre GR, Liu J (2002) A phosphate transporter from Medicago truncatula involved in the acquisition of phosphate released by arbuscular mycorrhizal fungi. Plant Cell 14:2413–2429

    Article  CAS  PubMed  Google Scholar 

  • Harrison RW (1955) A method of isolating vesicular-arbuscular endophytes from roots. Nature 175:432

    Google Scholar 

  • Hart M, Klironomos JN (2002) Diversity of arbuscular mycorrhizal fungi and ecosystem functioning. In: van der Heijden MGA, Sanders IR (eds) Mycorrhizal ecology. Springer, Berlin Heidelberg New York, pp 225–242

  • Hattingh MJ, Gray LE, Gerdemann JW (1973) Uptake and translocation of 32P-labelled phosphate to onion roots by endomycorrhizal fungi. Soil Sci 116:383–387

    CAS  Google Scholar 

  • Hawker LE, Harrison RW, Nicholls VO, Ham AM (1957) Studies on vesicular-arbuscular endophytes. I. A strain of Pythium ultimum Trow. In roots of Allium ursinum L. and other plants. Trans Br Mycol Soc 40:375–390

    Google Scholar 

  • Hayman DS (1973) The effects of light intensity on VA mycorrhiza. Rothamsted Report for 1972, Part 1. p 81

  • Hayman DS (1974) Plant growth response to vesicular-arbuscular mycorrhiza. VI. Effect of light and temperature. New Phytol 73:71–80

    Google Scholar 

  • Hayman DS (1983) The physiology of vesicular-arbuscular endomycorrhizal symbiosis. Can J Bot 61:944–963

    Google Scholar 

  • Hayman DS, Mosse B (1971) Plant growth responses to vesicular-arbuscular mycorrhiza. I. Growth of Endogone-inoculated plants in phosphate-deficient soils. New Phytol 70:19–27

    CAS  Google Scholar 

  • Hayman DS, Mosse B (1972) Plant growth responses to vesicular-arbuscular mycorrhiza. III. Increased uptake of labile P from soil. New Phytol 71:41–47

    Google Scholar 

  • Heap AJ, Newman EI (1980) Links between roots by hyphae of vesicular-arbuscular mycorrhizas. New Phytol 85:169–171

    Google Scholar 

  • Heijden MGA van der, Klironomos JN, Ursic M, Moutoglis P, Streitwolf-Engel R, Boller T, Wiemken A, Sanders IR (1998) Mycorrhizal fungal diversity determines plant biodiversity, ecosystem variability and productivity. Nature 396:69–72

    Article  Google Scholar 

  • Helgason T, Merryweather JW, Denison J, Wilson P, Young JPW, Fitter AH (2002) Selectivity and functional diversity in arbuscular mycorrhizas of co-occurring fungi and plants from a temperature deciduous woodland. J Ecol 90:371–384

    Article  Google Scholar 

  • Hepper CM (1987) Gel electrophoresis for identification of VAM fungi. In: Sylvia DM, Hung LL, Graham JH (eds) Mycorrhizae in the next decade. Practical applications and research priorities. Proceedings of the 7th North American Conference on Mycorrhizae. Institute of Food and Agricultural Sciences, University of Florida, Gainesville, Fla., pp 308–310

  • Hetrick BD, Bloom J (1983) Vesicular-arbuscular mycorrhizal fungi associated with native tall grass prairie and cultivated winter wheat. Can J Bot 61:2140–2146

    Google Scholar 

  • Hildebrand AA, Koch LW (1936) A microscopical study of the infection of the roots of strawberry and tobacco seedlings by microorganisms of the soil. Can J Res C 14:11–26

    Google Scholar 

  • Hirrel MC, Mehravaran H, Gerdemann JW (1978) Vesicular-arbuscular mycorrhizae in the Chenopodiaceae and Cruciferae: do they occur? Can J Bot 56:2813–2817

    Google Scholar 

  • Ho I, Trappe JM (1973) Translocation of 14C from Festuca plants to their endomycorrhizal fungi. Nat New Biol 244:30–31

    CAS  PubMed  Google Scholar 

  • Holevas CD (1966) The effect of a vesicular-arbuscular mycorrhiza on the uptake of soil phosphorus by strawberry (Fragaria sp. var. Cambridge Favorite). J Hortic Sci 41:557–64

    Google Scholar 

  • Howard A (1940) An agricultural testament. Oxford University Press, London

  • Hung LL, Sylvia DM (1987) VAM inoculum production in aeroponic culture. In: Sylvia DM, Hung LL, Graham JH (eds) Mycorrhizae in the next decade, practical applications and research priorities. Proceedings of the 7th North American conference on mycorrhiza. Institute of Food and Agricultural Sciences, University of Florida, Gainesville, Fla., pp 272–273

  • Hussey RS, Roncadori RW (1977) Interaction of Pratylenchus brachyurus and an endomycorrhizal fungus on cotton. J Nematol 9:270–271

    Google Scholar 

  • Jakobsen I, Abbott LK, Robson AD (1992a) External hyphae of vesicular-arbuscular mycorrhizal fungi associated with Trifolium subterraneum L. 1. Spread of hyphae and phosphorus inflow into roots. New Phytol 120:371–380

    CAS  Google Scholar 

  • Jakobsen I, Abbott LK, Robson AD (1992b) External hyphae of vesicular-arbuscular mycorrhizal fungi associated with Trifolium subterraneum L. 2. Hyphal transport of 32P over defined distances. New Phytol 120:509–516

    CAS  Google Scholar 

  • Janos DP (1980) Mycorrhiza influence tropical succession. Biotropica 12 [Suppl]:56–64

  • Janse JM (1897) Les endophytes radicaux de quelques plantes Javanaises. Ann Jardin Bot Buitenzorg 14:53–201

    Google Scholar 

  • Jasper DA, Abbott LK, Robson AD (1989) Hyphae of a vesicular-arbuscular mycorrhizal fungus maintain infectivity in dry soil, except when the soil is disturbed. New Phytol 112:101–107

    Google Scholar 

  • Johnson NC, Graham JH, Smith FA (1997) Functioning of mycorrhizal associations along the mutualism-parasitism continuum. New Phytol 135:575–585

    Article  Google Scholar 

  • Joner EJ, Ravnskov S, Jakobsen I (2000) Arbuscular mycorrhizal phosphate transport under monoxenic conditions using radio-labeled inorganic and organic phosphate. Biotechnol Lett 22:1705–1708

    CAS  Google Scholar 

  • Jones FR (1924) A mycorrhizal fungus in the roots of legumes and some other plants. J Agric Res 29:459–470

    Google Scholar 

  • Jones M, Smith SE (2003) Exploring functional definitions of mycorrhizas: are they always mutualisms? In: Proceedings, ICOM 4, Montreal, Canada, p 470

  • Kabir Z, O’Halloran IP, Hamel C (1997) Overwinter survival of arbuscular mycorrhizal hyphae is favored by attachment to roots but diminished by disturbance. Mycorrhiza 7:197–200

    Article  Google Scholar 

  • Kape R, Wex K, Parniske M, Görge E, Wetzel A, Werner D (1992) Legume root metabolites and VA-mycorrhiza development. J Plant Physiol 141:54–60

    Google Scholar 

  • Kelley AP (1931) The concept of mycorrhiza. Mycologia 23:147–151

    Google Scholar 

  • Kelley AP (1950) Mycotrophy in plants. Chronica Botanica, Waltham, Mass.

  • Khan AG (1972) The effect of vesicular-arbuscular mycorrhizal associations on growth of cereals. I. Effects on maize growth. New Phytol 71:613–619

    Google Scholar 

  • Kinden DA, Brown MF (1975) Electron microscopy of vesicular-arbuscular mycorrhizae of yellow poplar. III. Host-endophyte interactions during arbuscular development. Can J Microbiol 21:1930–1939

    CAS  PubMed  Google Scholar 

  • Klironomos JN, Moutoglis P (1999) Colonization of nonmycorrhizal plants by mycorrhizal neighbours as influenced by the collembolan Folsomia candida. Biol Fertil Soils 29:277–281

    Article  Google Scholar 

  • Klironomos JN, Hart MM, Gurney JE, Moutoglis P (2001) Interspecific differences in the tolerance of arbuscular mycorrhizal fungi to freezing and drying. Can J Bot 79:1161–1166

    Article  Google Scholar 

  • Koch LW (1935) Recent investigations on tobacco root rot in Canada. Can J Res 13:174–186

    Google Scholar 

  • Koide RT (1991) Nutrient supply, nutrient demand and plant response to mycorrhizal infection. New Phytol 117:365–386

    CAS  Google Scholar 

  • Koide RT (2000) Mycorrhizal symbiosis and plant reproduction. In: Kapulnik Y, Douds DD Jr (eds) Arbuscular mycorrhizas: physiology and function. Kluwer, Dordrecht, pp 19–46

  • Koide RT, Dickie IA (2002) Effects of mycorrhizal fungi on plant populations. In: Smith SE, Smith FA (eds) Diversity and integration in mycorrhizas. Kluwer, Dordrecht, pp 307–318

  • Koide RT, Kabir Z (2000) Extraradical hyphae of the mycorrhizal fungus Glomus intraradices can hydrolyze organic phosphate. New Phytol 148:511–517

    Article  CAS  Google Scholar 

  • Koide RT, Li M (1990) On host regulation of the vesicular-arbuscular mycorrhizal symbiosis. New Phytol 114:59–74

    Google Scholar 

  • Koide RT, Mooney HA (1987) Spatial variation in inoculum potential of vesicular-arbuscular mycorrhizal fungi caused by formation of gopher mounds. New Phytol 107:173–182

    Google Scholar 

  • Koide RT, Schreiner RP (1992) Regulation of the vesicular-arbuscular mycorrhizal symbiosis. Annu Rev Plant Physiol Plant Mol Biol 43:557–581

    CAS  Google Scholar 

  • Kormanik PP, Bryan WC, Schultz RC (1980) Increasing endomycorrhizal fungus inoculum in forest nursery soil with cover crops. South J Appl For 4:151–153

    Google Scholar 

  • Kruckelmann HW (1975) Effects of fertilizers, soils, soil tillage, and plant species on the frequency of Endogone chlamydospores and mycorrhiza infection in arable soils. In: Sanders FE, Mosse B, Tinker PB (eds) Endomycorrhizas, Proceedings of a Symposium held at the University of Leeds, 22–25 July 1974, Academic Press, London

  • Lewis DH, Ingram J (2002) A brief history of New Phytol. New Phytol 153:2–16

    Article  Google Scholar 

  • Link HF (1809) Observationes in ordines plantarum naturales. Die Gesellschaft naturforschender Freunde zu Berlin: Magazin für die neuesten Entdeckungen in der gesammten Naturkunde 3:33

  • Lohman ML (1927) Occurrence of mycorrhiza in Iowa forest plants. University of Iowa Studies in Natural History 11:33–58

    Google Scholar 

  • MacDonald RM, Chandler MR, Mosse B (1982) The occurrence of bacterium-like organelles in vesicular-arbuscular mycorrhizal fungi. New Phytol 90:659–663

    Google Scholar 

  • Magrou J (1946) Sur la culture de quelques champignons de mycorrhizes à arbuscules et à vesicules. Rev Gén Bot 53:49–77

    Google Scholar 

  • Marx C, Dexheimer J, Gianinazzi-Pearson V, Gianinazzi S (1982) Enzymatic studies on the metabolism of vesicular-arbuscular mycorrhizas. IV. Ultracytoenzymological evidence (ATPase) for active transfer processes in the host-arbuscule interface. New Phytol 90:37–43

    CAS  Google Scholar 

  • Massicotte HB, Peterson RL (2003) Exploring structural definitions of mycorrhizas. In: Proceedings, ICOM 4, Montreal, Canada, p 405

  • McArthur DAJ, Knowles NR (1992) Resistance responses of potato to vesicular-arbuscular mycorrhizal fungi under varying abiotic phosphorus levels. Plant Physiol 100:341–351

    CAS  Google Scholar 

  • McGonigle TP, Fitter AH (1988) Ecological consequences of arthropod grazing on VA mycorrhizal fungi. Proc R Soc Edinburgh B 94:25–32

    Google Scholar 

  • McGonigle TP, Miller MH, Evans DG, Fairchild GL, Swan JA (1990) A new method which gives an objective measure of colonization of roots by vesicular-arbuscular mycorrhizal fungi. New Phytol 115:495–501

    Google Scholar 

  • Mejstrík V, Gianinazzi-Pearson V, Alexander IJ, Fitter A, Harley JL, Last FT, Read DJ, Disin RG, Molina R, Finlay RD (eds) (1990) Ecological and applied aspects of ecto- and endomycorrhizal associations. Agric Ecosyst Environ 29:1–492

    Article  Google Scholar 

  • Meloh KA (1961) Untersuchungen zur Biologie und Bedeutung der endotrophen Mycorrhiza bei Zea mays L. und Avena sativa L. Dissertationsschrift der Universität Köln

  • Meloh KA (1963) Untersuchungen zur Biologie der endotrophen Mycorrhiza bei Zea mays L. und Avena sativa L. Arch Microbiol 46:369–381

    Google Scholar 

  • Menge JA (1982) Effect of soil fumigants and fungicides on vesicular-arbuscular fungi. Phytopathology 72:1125–1132

    Google Scholar 

  • Menge JA (1985) Developing widescale VA mycorrhizal inoculations: is it practical or necessary? In: Molina R (ed) Proceedings of the 6th North American conference on Mycorrhizae. Forest Research Laboratory, Oregon State University, Corvallis, Ore., pp 80–82

  • Menge JA, Lembright H, Johnson ELV (1977) Utilization of mycorrhizal fungi in citrus nurseries. Proc Int Soc Citriculture 1:129–132

    Google Scholar 

  • Merryweather J, Fitter A (1996) Phosphorus nutrition of an obligately mycorrhizal plant treated with the fungicide benomyl in the field. New Phytol 132:307–311

    CAS  Google Scholar 

  • Miller RM, Jastrow JD (2000) Mycorrhizal fungi influence soil structure. In: Kapulnik Y, Douds DD Jr (eds) Arbuscular mycorrhizas: physiology and function. Kluwer, Dordrecht, pp 3–18

  • Modjo HS, Hendrix JW (1986) The mycorrhizal fungus Glomus macrocarpum as a cause of tobacco stunt disease. Phytopathology76:688–691

  • Morandi D, Gianinazzi-Pearson V (1985) Influence of mycorrhizal infection and phosphate nutrition on secondary metabolite contents of soybean roots. In: Gianinazzi-Pearson, Gianinazzi S (eds) Physiological and genetical aspects of mycorrhizae. INRA, Paris

  • Morton JB, Benny GL (1990) Revised classification of arbuscular mycorrhizal fungi (Zygomycetes): a new order, Glomales, two new suborders, Glomineae and Giagasporineae, and two new families, Acaulosporaceae and Gigasporaceae, with an emendation of Glomaceae. Mycotaxon 37:471–491

    Google Scholar 

  • Morton JB, Benny GL (2001) Two new families of Glomales, Archaeosporaceae and Paraglomaceae, with two new genera Archaeospora and Paraglomus, based on concordant molecular and morphological characters. Mycologia 93:181–195

    Google Scholar 

  • Mosse B (1953) Fructifications associated with mycorrhizal strawberry roots. Nature 171:974

    CAS  PubMed  Google Scholar 

  • Mosse B (1956) Fructifications of an Endogone species causing endotrophic mycorrhiza in fruit plants. Ann Bot 20:349–362

    Google Scholar 

  • Mosse B (1957) Growth and chemical composition of mycorrhizal and non-mycorrhizal apples. Nature 179:922

    CAS  PubMed  Google Scholar 

  • Mosse B (1959a) The regular germination of resting spores and some observations on the growth requirements of an Endogone sp. causing vesicular-arbuscular mycorrhiza. Trans Br Mycol Soc 42:274–286

    Google Scholar 

  • Mosse B (1959b) Observations on the extramatrical mycelium of a vesicular-arbuscular endophyte. Trans Br Mycol Soc 42:439–448

    Google Scholar 

  • Mosse B (1961) Experimental techniques for obtaining a pure inoculum of an Endogone sp., and some observations on the vesicular-arbuscular infections caused by it and other fungi. Rec Adv Bot 2:1728–1732

    Google Scholar 

  • Mosse B (1962) The establishment of vesicular-arbuscular mycorrhiza under aseptic conditions. J Gen Microbiol 27:509–520

    CAS  Google Scholar 

  • Mosse B (1963) Vesicular-arbuscular mycorrhiza: an extreme form of fungal adaptation. In: Nutman PS, Mosse B (eds) Symbiotic associations. Thirteenth symposium of the Society for General Microbiology. Cambridge University Press, Cambridge

  • Mosse B (1970) Honey-coloured, sessile Endogone spores. II. Changes in fine structure during spore development. Arch Microbiol 74:129–145

    Google Scholar 

  • Mosse B (1972) The influence of soil type and Endogone strain on the growth of mycorrhizal plants in phosphate deficient soils. Rev Ecol Biol Sol 9:529–537

    CAS  Google Scholar 

  • Mosse B (1973) Plant growth responses to vesicular-arbuscular mycorrhiza. IV. In soil given additional phosphate. New Phytol 72:127–136

    Google Scholar 

  • Mosse B (1985) Endotrophic mycorrhiza (1885–1950): the dawn and the middle ages. In: Proceedings of the 6th North American conference on mycorrhizae. Forest Research Laboratory, Oregon State University, Corvallis, Ore., pp 48–55

  • Mosse B, Bowen GD (1968) A key to the recognition of some Endogone spore types. Trans Br Mycol Soc 51:469–483

    Google Scholar 

  • Mosse B, Hayman DS (1971) Plant growth responses to vesicular-arbuscular mycorrhiza. II. In unsterilized field soils. New Phytol 70:29–34

    Google Scholar 

  • Mosse B, Hepper CM (1975) Vesicular-arbuscular infections in root-organ cultures. Physiol Plant Pathol 5:215–223

    Google Scholar 

  • Mosse B, Powell CL, Hayman DS (1976) Plant growth response to vesicular-arbuscular mycorrhiza. IX. Interactions between VA mycorrhiza, rock phosphate and symbiotic nitrogen fixation. New Phytol 76:331–342

    CAS  Google Scholar 

  • Mugnier J, Mosse B (1987) Vesicular-arbuscular mycorrhizal infection in transformed root-inducing T-DNA roots grown axenically. Phytopathology 77:1045–1050

    Google Scholar 

  • Murdoch CL, Jackobs JA, Gerdemann JW (1967) Utilization of phosphorus sources of different availability to mycorrhizal and nonmycorrhizal maize. Plant Soil 27:239–334

    Google Scholar 

  • Nägeli C (1842) Pilze im Innern von Zellen. Linnaea 16:278–285

    Google Scholar 

  • Nair MG, Safir GR, Siqueira JO (1991) Isolation and identification of vesicular-arbuscular mycorrhiza-stimulatory compounds from clover Trifolium repens roots. Appl Environ Microbiol 57:434–439

    CAS  Google Scholar 

  • Nakano A, Takahashi K, Kimura M (1999) The carbon origin of arbuscular mycorrhizal fungi estimated from δ13C values of individual spores. Mycorrhiza 9:41–47

    Article  CAS  Google Scholar 

  • Newman EI (1966) A method of estimating the total length of root in a sample. J Appl Ecol 3:139–145

    Google Scholar 

  • Newsham KK, Fitter AH, Watkinson AR (1995) Arbuscular mycorrhiza protect an annual grass from root pathogenic fungi in the field. J Ecol 83:991–1000

    Google Scholar 

  • Nicholls VO (1952) Studies on the association between certain soil fungi and the roots of some members of the Liliiflorae. PhD dissertation, Department of Botany, University of Bristol

  • Nicolson TH (1959) Mycorrhizae in the Graminae. I. Vesicular arbuscular endophytes, with special reference to the external phase. Trans Br Mycol Soc 42:421–438

    Google Scholar 

  • Nicolson TH (1960) Mycorrhizae in the Gramineae. II. Development in different habitats, particularly sand dunes. Trans Br Mycol Soc 43:132–145

    Google Scholar 

  • Nicolson TH (1967) Vesicular-arbuscular mycorrhiza—a universal plant symbiosis. Science Progress, Oxford 55:561–581

  • Nicolson TH, Gerdemann JW (1968) Mycorrhizal Endogone species. Mycologia 60:313–325

    Google Scholar 

  • Nicolson TH, Johnston C (1979) Mycorrhiza in the Graminae. III. Glomus fasciculatus as the endophyte of pioneer grasses in a maritime sand dune. Trans Br Mycol Soc 72:261–268

    Google Scholar 

  • O’Brien DG, McNaughton EJ (1928) Endotrophic mycorrhiza of strawberries and its significance. Research Bulletin W. Scotland Agricultural College 1:1–32

    Google Scholar 

  • O’Connor PJ, Smith SE, Smith FA (2002) Arbuscular mycorrhizas influence plant diversity and community structure in a semiarid herbland. New Phytol 154:209–218

    Article  Google Scholar 

  • O’Halloran IP, Miller MH, Arnold G (1986) Absorption of P by corn (Zea mays L.) as influenced by soil disturbance. Can J Soil Sci 66:287–302

    Google Scholar 

  • Orlovich D, Ashford AE (1993) Polyphosphate granules are an artefact of specimen preparation in the ectomycorrhizal fungus Pisolithus tinctorius. Protoplasma 173:91–105

    CAS  Google Scholar 

  • Owusu-Bennoah E, Mosse B (1979) Plant growth responses to vesicular-arbuscular mycorrhiza. XI. Field inoculation responses in barley, lucerne and onion. New Phytol 83:671–679

    Google Scholar 

  • Paszkowski U, Kroken S, Roux C, Briggs SP (2002) Rice phosphate transporter include an evolutionarily divergent gene specifically activated in arbuscular mycorrhizal symbiosis. Proc Natl Acad Sci USA 99:13324–13329

    Article  CAS  PubMed  Google Scholar 

  • Parent S (1990) Problems associated with the formulation of a premixed medium containing VAM. In: Allen MF, Williams SE (eds) Abstracts, 8th North American Conference on Mycorrhizae, University of Wyoming Agricultural Experiment Station, Laramie, Wyo., p 234

  • Pearson JN, Jakobsen I (1993) The relative contribution of hyphae and roots to phosphorus uptake by arbuscular mycorrhizal plants, measured by dual labeling with 32P and 33P. New Phytol 124:489–494

    CAS  Google Scholar 

  • Peng S, Eissenstat DM, Graham JH, Williams K, Hodge NC (1993) Growth depression in mycorrhizal Citrus at high-phosphorus supply. Plant Physiol 101:1063–1071

    CAS  Google Scholar 

  • Peterson L, Schelkle M (eds) (1993) Abstracts of the 9th North American Conference on Mycorrhizae. University of Guelph, Guelph, Ontario, Canada

  • Petri L (1903) Ricerche sul signifacto morfologica del prosporoidi (sporangioli di Janse) nelle micorrize endotrofiche. Nuovo G Bot Ital 10:541

    Google Scholar 

  • Peuss H (1958) Untersuchungen zur Ökologie und Bedeutung der Tabakmycorrhiza. Arch Microbiol 29:112–142

    CAS  Google Scholar 

  • Peyronel B (1923) Fructification de l’endophyte à arbuscules et à vesicules des mycorhizes endotrophes. Bull Soc Mycol Fr 39:119–126

    Google Scholar 

  • Peyronel B (1924) Specie di “Endogone” produttrici di micorize endotrofiche. Boll Stn Patol Veg Roma 5:73–75

    Google Scholar 

  • Peyronel B (1937) Le “Endogone” quasi produttrici di micorize endotrofiche nelle Fanerogame alpestri. Nuovo G Bot Ital N S 44:584–586

    Google Scholar 

  • Peyronel B (1940) Prime osservazioni sui rapporti tra luce e simbiosi micorrizica. Annuar. Lab. Chanousia Giardino Botanico dell’Ordine Mauiziana al Piccolo San Bernardo 4:3–19

  • Peyronel B (1950) L’étude des mycorhizes par l’observation directe. In: Proceedings of the Seventh International Botanical Congress, Stockholm 1950, pp 436–438

  • Phillips JM, Hayman DS (1970) Improved procedures for clearing roots and staining parasitic and vesicular-arbuscular mycorrhizal fungi for rapid assessment of infection. Trans Br Mycol Soc 55:158–160

    Google Scholar 

  • Plenchette C, Furlan V, Fortin JA (1981) Growth stimulation of apple trees in unsterilized soil under field conditions with VA mycorrhiza inoculation. Can J Bot 59:2003–2008

    Google Scholar 

  • Ponton F, Piché Y, Parent S, Caron M (1990a) The use of vesicular-arbuscular mycorrhizae in Boston fern production. I. Effects of peat-based mixes. HortScience 25:183–189

    Google Scholar 

  • Ponton F, Piché Y, Parent S, Caron M (1990b) The use of vesicular-arbuscular mycorrhizae in Boston fern production. II. Evaluation of four inocula. HortScience 25:416–419

    Google Scholar 

  • Porter WM, Robson AD, Abbott LK (1987) Field survey of the distribution of vesicular-arbuscular mycorrhizal fungi in relation to soil pH. J Appl Ecol 24:659–662

    Google Scholar 

  • Powell CL (1976) Mycorrhizal fungi stimulate clover growth in New Zealand hill country soils. Nature 264:436–438

    Google Scholar 

  • Powell CL, Bagyaraj DJ (1984) VA Mycorrhiza. CRC Press, Boca Raton, Fla.

  • Rausch C, Daram P, Brunner S, Jansa J, Laloi M, Leggewie G, Amrhein N, Bucher M (2001) A phosphate transporter expressed in arbuscule-containing cells in potato. Nature 414:462–466

    CAS  PubMed  Google Scholar 

  • Rawald W, Lyr H (1963) Mykorrhiza—Internationales Mykorrhizasymposium, Weimar 1960. Gustav Fischer, Jena

  • Rayner MC (1916) Recent developments in the study of endotrophic mycorhiza. New Phytol 15:161–175

    Google Scholar 

  • Rayner MC (1926–1927) Mycorrhiza. New Phytol 25:1–50, 65–108, 171–190, 248–263 338–372, 26:22–45, 85–114

  • Read DJ (1992) The mycorrhizal mycelium. In: Allen MF (ed) Mycorrhizal functioning, Chapman and Hall, New York, pp 102–133

  • Read DJ, Koucheki HK, Hodgson J (1976) Vesicular-arbuscular mycorrhiza in natural vegetation systems. New Phytol 77:641–653

    Google Scholar 

  • Read DJ, Lewis DH, Fitter AH, Alexander IJ (1992) Mycorrhizas in ecosystems. CAB International, Wallingford, Oxon

  • Redecker D (2000) Specific PCR primers to identify arbuscular mycorrhiza fungi within colonized roots. Mycorrhiza 10:73–80

    CAS  Google Scholar 

  • Reid CPP, Bowen GD (1979) Effects of soil moisture on VA mycorrhiza formation and root development in Medicago. In: Harley JL (ed) The soil-root interface. Academic Press, London

  • Ritz K, Newman EI (1985) Evidence for rapid cycling of phosphorus from dying roots to living plants. Oikos 45:174–180

    Google Scholar 

  • Robson AD, Abbott LK, Malajczuk N (1994) Management of mycorrhizas in agriculture, horticulture and forestry. Kluwer, Dordrecht

  • Rosewarne GM, Barker SJ, Smith SE, Smith FA, Schachtman DP (1999) A Lycopersicon esculentum phosphate transporter (LePT1) involved in phosphorus uptake from a vesicular-arbuscular mycorrhizal fungus. New Phytol 144:507–516

    CAS  Google Scholar 

  • Ross JP, Harper JA (1970) Effect of Endogone mycorrhiza on soybean yields. Phytopathology 60:1552–1556

    CAS  Google Scholar 

  • Ryan MH, McCully ME, Huang CX (2003) Location and quantification of phosphorus and other elements in fully hydrated, soil-grown arbuscular mycorrhizas: a cryo-analytical scanning electron microscopy study. New Phytol 160:429–441

    Article  CAS  Google Scholar 

  • Sanders FE, Tinker PB (1971) Mechanism of absorption of phosphate from soil by Endogone mycorrhizas. Nature 233:278–279

    CAS  Google Scholar 

  • Sanders FE, Tinker PB (1973) Phosphate flow into mycorrhizal roots. Pest Sci 4:385–395

    CAS  Google Scholar 

  • Sanders FE, Mosse B, Tinker PB (eds) (1975) Endomycorrhizas. Proceedings of a symposium held at the University of Leeds, 22–25 July 1974. Academic Press, London

  • Scannerini S, Bellando M (1968) Sull’ultrastruttura delle micorrhize endotrofiche di Ornithogalum umbellatum L. in attivita vegetativa. Atti Accad Sci Torino 102:795–809

    Google Scholar 

  • Scannerini S, Bonfante P (1991) Bacteria and bacteria-like objects in endomycorrhizal fungi (Glomaceae). In: Margulis L, Fester R (eds) Symbiosis as a source of evolutionary innovation: speciation and morphogenesis. MIT Press, Cambridge, Mass., pp 273–287

  • Schenck NC (1982) Methods and principles of mycorrhizal research. American Phytopathological Society, St. Paul, Minn.

  • Schenck NC (1985) VA mycorrhizal fungi 1950 to the present: the era of enlightenment. In: Molina R (ed) Proceedings of the 6th North American conference on Mycorrhizae. Forest Research Laboratory, Oregon State University, Corvallis, Ore., pp 56–60

  • Schlicht A (1889) Beitrag zur Kenntniss der Verbreitung und Bedeutung der Mycorhizen. Landwirtschaftliche Jahrbücher 18:478–506

  • Schüepp H, Miller DD, Bodmer M (1987) A new technique for monitoring hyphal growth of vesicular-arbuscular mycorrhizal fungi through soil. Trans Br Mycol Soc 89:429–435

    Google Scholar 

  • Schüßler A, Schwarzott D, Walker C (2001) A new fungal phylum, the Glomeromycota: phylogeny and evolution. Mycol Res 105:1413–1421

    Google Scholar 

  • Schwab SM, Reeves FB (1981) The role of endomycorrhizae in revegetation practices in the semi-arid west. III. Vertical distribution of vesicular-arbuscular (VA) mycorrhiza inoculum potential. Am J Bot 68:1293–1297

    Google Scholar 

  • Schwab SM, Menge JA, Tinker PB (1991) Regulation of nutrient transfer between host and fungus in vesicular-arbuscular mycorrhizas. New Phytol 117:387–398

    CAS  Google Scholar 

  • Shachar-Hill Y, Pfeffer PE, Douds D, Osman SF, Doner LW, Ratcliffe RG (1995) Partitioning of intermediary carbon metabolism in vesicular-arbuscular mycorrhizal leek. Plant Physiol 108:7–15

    CAS  Google Scholar 

  • Shibata K (1902) Cytologische Studien über die endotrophen Mycorrhizen. Jahrb Wiss Bot 37:643–684

    Google Scholar 

  • Simon L, Lalonde M, Bruns T (1990) Amplification and direct sequencing of ribosomal genes form VAM fungi. In: Allen MF, Williams SE (eds) Abstracts, 8th North American Conference on Mycorrhizae, University of Wyoming Agricultural Experiment Station, Laramie, Wyo., p 265

  • Simon L, Lalonde M, Bruns TD (1992) Specific amplification of 18S fungal ribosomal genes from vesicular-arbuscular endomycorrhizal fungi colonizing roots. Appl Environ Microbiol 58:291–295

    CAS  PubMed  Google Scholar 

  • Simon L, Levesque RC, Lalonde M (1993) Identification of endomycorrhizal fungi colonizing roots by fluorescent single-strand conformation polymorphism-polymerase chain reaction. Appl Environ Microbiol 59:4211–4215

    Google Scholar 

  • Siqueira JO, Sylvia D, Gibson J, Hubbel D (1985) Spores, germination, and germ tubes of vesicular-arbuscular mycorrhizal fungi. Can J Microbiol 31:965–997

    CAS  Google Scholar 

  • Siqueira JO, Safir GR, Nair MG (1991) Stimulation of vesicular-arbuscular mycorrhiza formation and growth of white clover by flavonoid compounds. New Phytol 118:87–93

    CAS  Google Scholar 

  • Smith FA, Smith SE (1997) Structural diversity in vesicular-arbuscular mycorrhizal symbioses. New Phytol 137:373–388

    Article  Google Scholar 

  • Smith SE, Daft MJ (1975) Interactions between growth, phosphate content and nitrogen fixation in mycorrhizal and non-mycorrhizal Medicago sativa. Aust J Plant Physiol 4:403–413

    Google Scholar 

  • Smith SE, Read DJ (1997) Mycorrhizal symbiosis, 2nd edn. Academic Press, San Diego

  • Smith SE, Smith FA, Jakobsen I (2003). Mycorrhizal fungi can dominate phosphate supply to plants irrespective of growth responses. Plant Physiol 133:16–20

    Article  CAS  PubMed  Google Scholar 

  • Smith TF (1978) Some effects of crop protection chemicals on the distribution and abundance of vesicular-arbuscular endomycorrhizas. J Aust Inst Agric Sci 44:82–88

    Google Scholar 

  • Solaiman MZ, Saito M (1997) Use of sugars by intraradical hyphae of arbuscular mycorrhizal fungi revealed by radiorespirometry. New Phytol 136:533–538

    CAS  Google Scholar 

  • Sparling GP, Tinker PB (1975) Mycorrhizas in Pennine grassland. In: Sanders FE, Mosse B, Tinker PB (eds) Endomycorrhizas, Proceedings of a Symposium held at the University of Leeds, 22–25 July 1974, Academic Press, London

  • Stahl M (1949) Die Mycorrhiza der Lebermoose mit besonderer Berücksichtigung der thallosen Formen. Planta 37:103–148

    Google Scholar 

  • St Arnaud M, Hamel C, Vimard B, Caron M, Fortin JA (1996) Enhanced hyphal growth and spore production of the arbuscular mycorrhizal fungus Glomus intraradices in an in vitro system in the absence of host roots. Mycol Res 100:328–332

    Google Scholar 

  • Tester M, Smith SE, Smith FA (1987) The phenomenon of “nonmycorrhizal” plants. Can J Bot 65:419–431

    Google Scholar 

  • Thaxter R (1922) A revision of the Endogoneae. Proc Am Acad Arts Sci 57:292–348

    Google Scholar 

  • Thompson JP (1987) Decline of vesicular-arbuscular mycorrhizae in long fallow disorder of field crops and its expression in phosphorus deficiency of sunflower. Aust J Agric Res 38:847–867

    CAS  Google Scholar 

  • Tisdall JM, Oades JM (1979) Stabilisation of soil aggregates by the root systems of ryegrass. Aust J Soil Res 17:429–441

    Google Scholar 

  • Trappe JM (1996) What is a mycorrhiza? In: Mycorrhizas in integrated systems from genes to plant development. Proceedings of the 4th European symposium on mycorrhizas. European Commission, Directorate-General XII, Science, Research and Development, Brussels, pp 3–6

  • Trappe JM, Berch SM (1985) The prehistory of mycorrhizae: A.B. Frank’s predecessors. In: Proceedings of the 6th North American conference on mycorrhizae. Forest Research Laboratory, Oregon State University, Corvallis, Ore., pp 2–11

  • Trappe JM, Schenck NC (1982) Taxonomy of the fungi forming endomycorrhizae. A. Vesicular-arbuscular mycorrhizal fungi (Endogonales) In: Schenck NC (ed), Methods and principles of mycorrhizal research. American Phytopathological Society, St. Paul, Minn., pp 1–10

  • Trappe JM, Molina R, Castellano M (1984) Reactions of mycorrhizal fungi and mycorrhiza formation to pesticides. Annu Rev Phytopathol 22:331–359

    Article  CAS  Google Scholar 

  • Tulasne LR, Tulasne C (1844) Fungi nonnulli hipogaei, novi v. minus cogniti auct. G Bot Ital 2:55–63

    Google Scholar 

  • Varma A (1998) Mycorrhiza manual. Springer, Berlin Heidelberg New York

  • Walker C (1987) Current concepts in the taxonomy of the Endogonaceae. Proceedings of the 7th NACOM. IFAS, University of Florida, Gainesville, Fla.

  • Warner A, Mosse B, Dingemann L (1985) The nutrient film technique for inoculum production. In: Molina R (ed) Proceedings of the 6th North American conference on Mycorrhizae. Forest Research Laboratory, Oregon State University, Corvallis, Ore., pp 85–86

  • Warnock AJ, Fitter AH, Usher MB (1982) The influence of a springtail Folsomia candida (Insecta, Collembola) on the mycorrhizal association of leek Allium porrum and the vesicular-arbuscular mycorrhizal endophyte Glomus fasciculatus. New Phytol 90:285–292

    Google Scholar 

  • Williams SE, Allen MF (1984) VA mycorrhiza and reclamation of arid and semi-arid lands. Wyoming Agricultural Experiment Station, University of Wyoming, Laramie, Wyo.

  • Wood T (1985) Commercial pot culture inoculum production: quality control and other headaches. In: Molina R (ed) Proceedings of the 6th North American conference on Mycorrhizae, Forest Research Laboratory, Oregon State University, Corvallis, Ore., p 84

  • Woolhouse H (1975) Membrane structure and transport problems considered in relation to phosphorus and carbohydrate movements and the regulation of endotrophic mycorrhizal associations. In: Sanders FE, Mosse B, Tinker PB (eds) Endomycorrhizas, Proceedings of a Symposium held at the University of Leeds, 22–25 July 1974, Academic Press, London, pp 209–239

  • Wright SF, Upadhyaya A (1996) Extraction of an abundant and unusual protein from soil and comparison with hyphal protein of arbuscular mycorrhizal fungi. Soil Sci 161:575–586

    CAS  Google Scholar 

  • Wyss P, Boller T, Wiemken A (1991) Phytoalexin response is elicited by a pathogen (Rhizoctonia solani) but not by a mycorrhizal fungus (Glomus mosseae) in soybean roots. Experientia 47:395–399

    CAS  Google Scholar 

Download references

Acknowledgements

This paper is modified from a lecture given by R.T.K. at the COST 8.38 Meeting, Arbuscular Mycorrhizal Research in Europe, The Dawning of a New Millennium, in Pisa, Italy. We thank the international and local organizing committees of that meeting and, in particular, Manuela Giovannetti for the opportunity to present that lecture. We also thank Vivienne Gianinazzi-Pearson for her encouragement to publish the lecture in this format, and Guillaume Bécard for his suggestion that we (B.M. and R.T.K.) collaborate in this effort. We are indebted to Guillaume Bécard for consultation on various sections of this paper, to Paul Grun, who translated a paper from the French, to Eckhard George, who supplied us with information about the 1960 meeting in Weimar, to Sally Smith, with whom we have discussed the contributions of some of the pioneers in our field, and to André Fortin and Paola Bonfante for their suggestions of material to include. We express our gratitude to the Life Sciences librarians at the Pennsylvania State University, and to the librarians at the Botany Libraries of Harvard University for their help in obtaining some of the older sources referenced herein. We dedicate this paper to The Nim, a thirteen-year old Geochelone chilensis, who lives happily half of each year in central France, and the other half in the south of England.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Roger T. Koide.

Additional information

Taken from a paper presented at the COST 8.38 meeting AM Research in Europe (Pisa, Italy): The Dawning of a New Millenium

Rights and permissions

Reprints and permissions

About this article

Cite this article

Koide, R.T., Mosse, B. A history of research on arbuscular mycorrhiza. Mycorrhiza 14, 145–163 (2004). https://doi.org/10.1007/s00572-004-0307-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00572-004-0307-4

Keywords

Navigation