Skip to main content
Log in

Epiphytic and terrestrial mycorrhizas in a lower montane Costa Rican cloud forest

  • Original Paper
  • Published:
Mycorrhiza Aims and scope Submit manuscript

Abstract

The epiphyte community is the most diverse plant community in neotropical cloud forests and its collective biomass can exceed that of the terrestrial shrubs and herbs. However, little is known about the role of mycorrhizas in this community. We assessed the mycorrhizal status of epiphytic (Araceae, Clusiaceae, Ericaceae, and Piperaceae) and terrestrial (Clusiaceae, Ericaceae) plants in a lower montane cloud forest in Costa Rica. Arbuscular mycorrhizas were observed in taxa from Araceae and Clusiaceae; ericoid mycorrhizas were observed in ericaceous plants. This is the first report of intracellular hyphal coils characteristic of ericoid mycorrhizas in roots of Cavendishia melastomoides, Disterigma humboldtii, and Gaultheria erecta. Ericaceous roots were also covered by an intermittent hyphal mantle that penetrated between epidermal cells. Mantles, observed uniquely on ericaceous roots, were more abundant on terrestrial than on epiphytic roots. Mantle abundance was negatively correlated with gravimetric soil water content for epiphytic samples. Dark septate endophytic (DSE) fungi colonized roots of all four families. For the common epiphyte D. humboldtii, DSE structures were most abundant on samples collected from exposed microsites in the canopy. The presence of mycorrhizas in all epiphytes except Peperomia sp. suggests that inoculum levels and environmental conditions in the canopy of tropical cloud forests are generally conducive to the formation of mycorrhizas. These may impact nutrient and water dynamics in arboreal ecosystems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1. Fig. 2. Fig. 3. Fig. 4. Fig. 5. Fig. 6. Fig. 7. Fig. 8.

Similar content being viewed by others

References

  • Allen MF (1991) The ecology of mycorrhizae. Cambridge University Press, Cambridge

  • Allen MF, Rincon E, Allen EB, Huante P, Dunn JJ (1993) Observations of canopy bromeliad roots compared with plants rooted in soils of a seasonal tropical forest, Chamela, Jalisco, Mexico. Mycorrhiza 4:27–28

    Google Scholar 

  • Augé RM (2001) Water relations, drought and vesicular-arbuscular mycorrhizal symbiosis. Mycorrhiza 11:3–42

    Article  Google Scholar 

  • Benzing DH (1987) Vascular epiphytism: taxonomic participation and adaptive diversity. Ann Mo Bot Gard 74:183–204

    Google Scholar 

  • Benzing DH (1990) Vascular epiphytes. Cambridge University Press, Cambridge

  • Bergero R, Perotto S, Girlanda M, Vidano G, Luppi AM (2000) Ericoid mycorrhizal fungi are common root associates of a Mediterranean ectomycorrhizal plant (Quercus ilex). Mol Ecol 9:1639–1649

    CAS  PubMed  Google Scholar 

  • Bermudes D, Benzing DH (1989) Fungi in neotropical epiphyte roots. BioSystems 23:65–73

    CAS  PubMed  Google Scholar 

  • Bohlman SA, Matelson TJ, Nadkarni NM (1995) Moisture and temperature patterns of canopy humus and forest floor soil of a montane cloud forest, Costa Rica. Biotropica 27:13–19

    Google Scholar 

  • Bolan NS, Robson AD, Barrow, NJ (1984) Increasing phosphorous supply can increase the infection of plant roots by vesicular-arbuscular mycorrhizal fungi. Soil Biol Biochem 16:419–420

    Article  CAS  Google Scholar 

  • Cairney JWG, Ashford AE (2002) Biology of mycorrhizal associations of epacrids (Ericaceae). New Phytol 154:305–326

    Article  Google Scholar 

  • Cairney JWG, Burke RM (1998) Extracellular enzyme activities of the ericoid mycorrhizal endophyte Hymenoscyphus ericae (Read) Korf & Kernan: their likely roles in decomposition of dead plant tissue in soil. Plant Soil 205:181–192

    CAS  Google Scholar 

  • Chalot M, Brun A (1998) Physiology of organic nitrogen acquisition by ectomycorrhizal fungi and ectomycorrhizas. FEMS Microbiol Rev 22:21–44

    Article  PubMed  Google Scholar 

  • Clark KL, Lawton RO, Butler PR (2000) The physical environment. In: Nadkarni NM, Wheelwright NT (eds) Monteverde: ecology and conservation of a tropical cloud forest. Oxford University Press, New York, pp 95–148

    Google Scholar 

  • Cullings KW (1996) Single phylogenetic origin of ericoid mycorrhizae within the Ericaceae. Can J Bot 74:1896–1909

    CAS  Google Scholar 

  • Dubrovsky JG, Doerner PW, Colón-Carmona A, Rost TL (2000) Pericycle cell proliferation and lateral root initiation in Arabidopsis. Plant Physiol 124:1648–1657

    Article  PubMed  Google Scholar 

  • Duddridge JA, Read DJ (1982) Ultrastructural analysis of the development of mycorrhizas in Rhododendron ponticum. Can J Bot 60:2345–2356

    Google Scholar 

  • Gemma JN, Koske RE (1995) Mycorrhizae in Hawaiian epiphytes. Pac Sci 49:175–180

    Google Scholar 

  • Ghosal S, Muruganandam AV, Chauhan S, Kawanishi K, Saiki K, Nadkarni NM (1999) Crown humus: part I. The chemistry of the canopy organic matter of rain forests in Costa Rica. Indian J Chem 38:67-75

    Google Scholar 

  • Haber WA (2000) Plants and vegetation. In: Nadkarni NM, Wheelwright NT (eds) Monteverde: ecology and conservation of a tropical cloud forest. Oxford University Press, New York, pp 39–70

    Google Scholar 

  • Hanson P (2000) Insects and spiders. In: Nadkarni NM, Wheelwright NT (eds) Monteverde: ecology and conservation of a tropical cloud forest. Oxford University Press, New York, pp 95–148

    Google Scholar 

  • Hietz P, Wanek W, Popp M (1999) Stable isotopic composition of carbon and nitrogen and nitrogen content in vascular epiphytes along an altitudinal transect. Plant Cell Environ 22:1435–1443

    Article  Google Scholar 

  • Hietz P, Wanek W, Wania R, Nadkarni NM (2002) Nitrogen-15 natural abundance in a montane cloud forest canopy as an indicator of nitrogen cycling and epiphyte nutrition. Oecologia 131:350–355

    Article  Google Scholar 

  • Ingram SW, Ferrell-Ingram K, Nadkarni NM (1996) Floristic composition of vascular epiphytes in a neotropical cloud forest, Monteverde, Costa Rica. Selbyana 17:88–103

    Google Scholar 

  • Janos DP, Sahley CT (1995) Rodent dispersal of vesicular-arbuscular mycorrhizal fungi in Amazonian Peru. Ecology 76:1852–1858

    Google Scholar 

  • Jarrell WM, Armstrong DE, Grigal DF, Kelly EF, Monger HC, Wedin DA (1999) Soil water and temperature status. In: Robertson GP, Coleman DC, Bledsoe CS, Sollins P (eds) Standard soil methods for long-term ecological research. Oxford University Press, New York, pp 55–73

  • Jumpponen A (2001) Dark septate endophytes — are they mycorrhizal? Mycorrhiza 11:207–211

    Article  Google Scholar 

  • Jumpponen A, Trappe JM (1998) Dark septate endophytes: a review of facultative biotrophic root-colonizing fungi. New Phytol 140:295–310

    Article  Google Scholar 

  • Kress WJ (1986) The systematic distribution of vascular epiphytes: an update. Selbyana 9:2–22

    Google Scholar 

  • Langtimm CA (2000) Arboreal mammals. In: Nadkarni NM, Wheelwright NT (eds) Monteverde: ecology and conservation of a tropical cloud forest. Oxford University Press, New York, pp 239–240

    Google Scholar 

  • Lesica P, Antibus RK (1990) The occurrence of mycorrhizae in vascular epiphytes of two Costa Rican rain forests. Biotropica 22:250–258

    Google Scholar 

  • Luteyn JL (1989) Speciation and diversity of Ericaceae in neotropical montane vegetation. In: Holm-Nielsen LB, Nielsen IC, Balslev H (eds) Tropical forests: botanical dynamics, speciation and diversity. Academic, New York, pp 297–311

    Google Scholar 

  • Madison M (1977) Vascular epiphytes: their systematic occurrence and salient features. Selbyana 2:1–13

    Google Scholar 

  • Maffia B, Nadkarni NM, Janos DP (1993) Vesicular-arbuscular mycorrhizae of epiphytic and terrestrial Piperaceae under field and greenhouse conditions. Mycorrhiza 4:5–9

    Google Scholar 

  • Mangan SA, Adler GH (2000) Consumption of arbuscular mycorrhizal fungi by terrestrial and arboreal small mammals in a Panamanian cloud forest. J Mammal 81:563–570

    Google Scholar 

  • Massicotte HB, Melville LH, Molina R, Peterson RL (1993) Structure and histochemistry of mycorrhizae synthesized between Arbutus menziesii (Ericaceae) and two basidiomycetes, Pisolithus tinctorius (Pisolithaceae) and Piloderma bicolor (Corticaceae). Mycorrhiza 3:1–11

    Google Scholar 

  • McGonigle TP, Miller MH, Evans DG, Fairchild GL, Swan JA (1990) A new method which gives an objective measure of colonization of roots by vesicular-arbuscular mycorrhizal fungi. New Phytol 115:495–501

    Google Scholar 

  • McLean CB, Anthony J, Collins RA, Steinke E, Lawrie AC (1998) First synthesis of ericoid mycorrhizas in the Epacridaceae under axenic conditions. New Phytol 139:589–593

    Article  Google Scholar 

  • McIlveen WD, Cole H Jr (1976) Spore dispersal of Endogonaceae by worms, ants, wasps, and birds. Can J Bot 54:1486–1489

    Google Scholar 

  • Michelsen A (1993) The mycorrhizal status of vascular epiphytes in Bale Mountains National Park, Ethiopia. Mycorrhiza 4:11–15

    Google Scholar 

  • Nadarajah P, Nawawi A (1993) Mycorrhizal status of epiphytes in Malaysian oil palm plantations. Mycorrhiza 4:21–25

    Google Scholar 

  • Nadkarni NM (1984) Epiphyte biomass and nutrient capital of a neotropical elfin forest. Biotropica 16:249–256

    Google Scholar 

  • Nadkarni NM, Longino JT (2000) Invertebrates in canopy and ground organic matter. In: Nadkarni NM, Wheelwright NT (eds) Monteverde: ecology and conservation of a tropical cloud forest. Oxford University Press, New York, pp 95–148

    Google Scholar 

  • Nadkarni NM, Schaefer DA, Matelson TJ, Solano R (2002) Comparison of arboreal and terrestrial soil characteristics in a lower montane forest, Monteverde, Costa Rica. Pedobiologia 46:24–33

    Google Scholar 

  • Olsen SR, Sommers LE (1982) Phosphorus. In: Page AL, Miller RH, Kennedy DR (eds) Methods of soil analysis, part 2. Chemical and microbiological properties. American Society of Agronomy, Madison, Wis, USA

  • Perry D (1978) A method of access into the crowns of emergent trees. Biotropica 10:155–157

    Google Scholar 

  • Phillips JM, Hayman DS (1970) Improved procedure for clearing roots and staining parasitic and vesicular-arbuscular mycorrhizal fungi for rapid assessment of infection. Trans Br Mycol Soc 55:158–161

    Google Scholar 

  • Rabatin SC, Stinner BR, Paoletti MG (1993) Vesicular-arbuscular mycorrhizal fungi, particularly Glomus tenue, in Venezuelan bromeliad epiphytes. Mycorrhiza 4:17–20

    Google Scholar 

  • Read DJ, Haselwandter K (1981) Observations on the mycorrhizal status of some alpine plant communities. New Phytol 88:341–352

    Google Scholar 

  • Robertson DC, Robertson JA (1985) Ultrastructural aspects of Pyrola mycorrhizae. Can J Bot 63:1089–1098

    Google Scholar 

  • Sillett SC, Van Pelt R (2000) A redwood tree whose crown is a forest canopy. Northwest Sci 74:34–43

    Google Scholar 

  • Smith JE, Molina R, Perry DA (1995) Occurrence of ectomycorrhizas on ericaceous and coniferous seedlings grown in soils from the Oregon Coast Range. New Phytol 129:73–81

    Google Scholar 

  • Smith SE, Read DJ (1997) Mycorrhizal symbiosis. Academic, London

  • St. John T (1980) Uma lista de espécies de plantas tropicais brasileiras naturalmente infectadas com micorriza vesicular-arbuscular. Acta Amazonica 10:229–234

    Google Scholar 

  • Urcelay C (2002) Co-occurrence of three fungal root symbionts in Gaultheria poeppiggi DC in Central Argentina. Mycorrhiza 12:89–92

    PubMed  Google Scholar 

  • Vance E, Nadkarni N (1990) Microbial biomass and activity in canopy organic matter and the forest floor of a tropical cloud forest. Soil Biol Biochem 22:677–684

    CAS  Google Scholar 

  • Whitbeck JL (2001) Effects of light environment on vesicular-arbuscular mycorrhiza development in Inga leiocalycina, a tropical wet forest tree. Biotropica 33:303–311

    Google Scholar 

  • Wurzburger N, Bledsoe CS (2001) Comparison of ericoid and ectomycorrhizal colonization and ectomycorrhizal morphotypes in mixed conifer and pygmy forests on the northern California coast. Can J Bot 79:1202–1210

    Article  Google Scholar 

  • Wurzburger N, Bidartondo MI, Bledsoe CS (2001) Characterization of Pinus ectomycorrhizas from mixed conifer and pygmy forests using morphotyping and molecular methods. Can J Bot 79:1211–1216

    Article  Google Scholar 

  • Xiao G, Berch SM (1996) Diversity and abundance of ericoid mycorrhizal fungi of Gaultheria shallon on forest clearcuts. Can J Bot 74:337–346

    Google Scholar 

  • Young BE, McDonald DB (2000) Birds. In: Nadkarni NM, Wheelwright NT (eds) Monteverde: ecology and conservation of a tropical cloud forest. Oxford University Press, New York, pp 179–217

    Google Scholar 

Download references

Acknowledgements

We thank the Tropical Science Center and the staff at the Monteverde Cloud Forest Preserve for protection and maintenance of the study sites, C. Jandér and R. Solano for field assistance, W. Haber and W. Zuchowski for assistance with identification of plant species, M. Allen, A. Ashford, G. Cuenca, and D. Read for assistance with identification of mycorrhizal structures, J. Jernstedt for use of a photomicroscope, S. Nichol for assistance with the longitudinal sections, and A. Hartshorn, M. Rains, N. Wurzburger and two anonymous reviewers for helpful comments in the preparation of this manuscript. The work was supported by a Jastro Shields Graduate Research Scholarship Award and a UC Davis Graduate Fellowship to K.C.R., National Science Foundation research grants to N.M.N. (BSR 96-15341, BIR 96-30316, and BIR 9974035) and C.S.B. (DEB 95-27722), and a grant from the National Geographic Society Committee for Research and Exploration to N.M.N.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kai Coshow Rains.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rains, K.C., Nadkarni, N.M. & Bledsoe, C.S. Epiphytic and terrestrial mycorrhizas in a lower montane Costa Rican cloud forest. Mycorrhiza 13, 257–264 (2003). https://doi.org/10.1007/s00572-003-0224-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00572-003-0224-y

Keywords

Navigation