Skip to main content
Log in

Review: MEMS sensors for flow separation detection

  • Review Paper
  • Published:
Microsystem Technologies Aims and scope Submit manuscript

Abstract

Flow separation is a critical aerodynamic phenomenon impacting flight envelope of various flying objects. Its efficient detection and subsequent control are vital for enhanced manoeuvring, better fuel economy, superior flight controls, and even for the survival of small air vehicles such as MAVs and UAVs. Over the past 3 decades, MEMS technology has enabled a paradigm shift from macro-level conventional sensing techniques to micro-scale sensors. Critical aerodynamics phenomenon such as flow separation, boundary-layer transitioning, shock, local flow and vortex dynamics, etc. can now be captured with better spatial as well as temporal resolution. Analysis spectrum has also been stretched by compensating the limitations of conventional techniques. This review paper is focused on the use of MEMS technology in the field of flow separation detection. We first briefly introduce the flow separation phenomenon and the limitations of conventional sensing techniques. Then, the application of MEMS to flow separation detection will be discussed in detail with emphasis on the prominent research work and performance review of various MEMS sensors employed in recent past.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19

Similar content being viewed by others

Data availability

Data sharing is not applicable to this article as no new data were created or analyzed in this study.

References

  • Aleman MA, Saini A, Gopalarathnam A (2017) Airfoil flow-separation and stall detection using surface-mounted pitot tubes. In: 35th AIAA Appl. Aerodyn. Conf., pp 1–11. https://doi.org/10.2514/6.2017-3749

  • Anderson Jr. JD (1988) Introduction to flight, Third, Mcgraw-Hill College, 1988. https://www.goodreads.com/book/show/2715037-introduction-to-flight accessed 14 Jan 2021

  • Anderson Jr. JD (2021) Fundamentals of aerodynamics, Five, McGraw-Hill Education, 2010. https://www.amazon.com/Fundamentals-Aerodynamics-John-Anderson-Jr/dp/0073398101 accessed 14 Jan2021

  • Barlian AA, Park SJ, Mukundan V, Pruitt BL (2007) Design and characterization of microfabricated piezoresistive floating element-based shear stress sensors. Sens Actuat A Phys 134:77–87. https://doi.org/10.1016/j.sna.2006.04.035

    Article  Google Scholar 

  • Barth PW, Bernard SL, Angell JB (1985) Flexible circuit and sensor arrays fabricated by monolithic silicon technology. IEEE Trans Electron Dev 32:1202–1205. https://doi.org/10.1109/T-ED.1985.22101

    Article  Google Scholar 

  • Beebe DJ, Denton DD (1994) A flexible polyimide-based package for silicon sensors. Sens Actuat A Phys 44:57–64. https://doi.org/10.1016/0924-4247(93)00775-Y

    Article  Google Scholar 

  • Bekey GA (2005) Autonomous robots: from biological inspiration to implementation and control. MIT Press, Cambridge

    Google Scholar 

  • Bellhouse BJ, Schultz DL (1966) Determination of mean and dynamic skin friction, separation and transition in low-speed flow with a thin-film heated element. J Fluid Mech 24:379–400. https://doi.org/10.1017/S0022112066000715

    Article  Google Scholar 

  • Bin-Lee G, Huang A, Ho CM, Jiang F, Grosjean C, Tai YC (2000) Sensing and control of aerodynamic separation by MEMS. J Mech 16:45–52. https://doi.org/10.1017/S1727719100001763

    Article  Google Scholar 

  • Buchner R, Sosna C, Maiwald M, Benecke W, Lang W (2006) A high-temperature thermopile fabrication process for thermal flow sensors. Sens Actuat A Phys 130–131:262–266. https://doi.org/10.1016/j.sna.2006.02.009

    Article  Google Scholar 

  • Buchner R, Froehner K, Sosna C, Benecke W, Lang W (2008) Toward flexible thermoelectric flow sensors: a new technological approach. J Microelectromech Syst 17:1114–1119. https://doi.org/10.1109/JMEMS.2008.926143

    Article  Google Scholar 

  • Buder U, Berns A, Obermeier E, Petz R, Nitsche W (2005) AeroMEMS wall hot-wire anemometer on polyimide foil for measurement of high frequency fluctuations. Proc IEEE Sens 2005:545–548. https://doi.org/10.1109/ICSENS.2005.1597756

    Article  Google Scholar 

  • Buder U, Petz R, Kittel M, Nitsche W, Obermeier E (2008) AeroMEMS polyimide based wall double hot-wire sensors for flow separation detection. Sens Actuat A Phys 142:130–137. https://doi.org/10.1016/j.sna.2007.04.058

    Article  Google Scholar 

  • Chandrasekharan V, Sells J, Meloy J, Arnold DP, Sheplak M (2011) A microscale differential capacitive direct wall-shear-stress sensor. J Microelectromech Syst 20:622–635. https://doi.org/10.1109/JMEMS.2011.2140356

    Article  Google Scholar 

  • Ch-Brucker WS, Spatz J (2005) Feasability study of wall shear stress imaging using microstructured surfaces with flexible micropillars. Exp Fluids 39:464–474

    Article  Google Scholar 

  • Chengyu J, Jinjun D, Binghe M, Weizheng Y (2012) Advanced flow measurement and active flow control of aircraft with MEMS. Eng Sci 10:26–32

    Google Scholar 

  • Corke TC, Bowles PO, He C, Matlis EH (2011) Sensing and control of flow separation using plasma actuators. Philos Trans R Soc A Math Phys Eng Sci 369:1459–1475. https://doi.org/10.1098/rsta.2010.0356

    Article  Google Scholar 

  • Dickinson B, Singler J, Batten B (2008) The detection of unsteady flow separation with bioinspired hair cell sensors. In: 26th AIAA Aerodyn. Meas. Technol. Gr. Test. Conf., Seattle, WA, USA, p. AIAA-2008-3937

  • Dickinson B, McClain BS, Case L (2012a) The dynamic response of quasi-steady hair-like structures in oscillatory boundary layer flows. In: 6th AIAA Flow Control Conf., New Orleans, LA, USA, p AIAA-2012a-3048

  • Dickinson B, McClain S, Case L (2012b) Response of passive surface hairs in steady Falkner-Skan boundary layers. In: 6th AIAA Flow Control Conf., New Orleans, LA, USA

  • Dickinson BT, Singler JR, Batten BA (2012c) Mathematical modeling and simulation of biologically inspired hair receptor arrays in laminar unsteady flow separation. J Fluids Struct 29:1–17. https://doi.org/10.1016/j.jfluidstructs.2011.12.010

    Article  Google Scholar 

  • DiStasio N, Lehoux S, Khademhosseini A, Tabrizian M (2018) The multifaceted uses and therapeutic advantages of nanoparticles for atherosclerosis research. Materials (basel). https://doi.org/10.3390/ma11050754

    Article  Google Scholar 

  • Fernholz WD, Higuchi H, Janke G, Schober M, Wagner P (1996) New developments and applications of skin-friction measuring techniques. Meas Sci Technol 7:1396–1409

    Article  Google Scholar 

  • Francioso L, De Pascali C, Casino F, Siciliano P, Giorgi MG, Campilongo S, Ficarella A (2015) Embedded sensor/actuator system for aircraft active flow separation control. In: Proc. 2015 18th AISEM Annu. Conf. AISEM 2015. 3–6. https://doi.org/10.1109/AISEM.2015.7066783

  • Francioso L, De Pascali C, Pescini E, De Giorgi MG, Siciliano P (2016) Modeling, fabrication and plasma actuator coupling of flexible pressure sensors for flow separation detection and control in aeronautical applications. J Phys D Appl Phys 49:235201. https://doi.org/10.1088/0022-3727/49/23/235201

    Article  Google Scholar 

  • Gad-el-Hak M (1989) Flow Control. Appl Mech Rev 42:261–293

    Article  Google Scholar 

  • Gad-el-Hak M (2001) Flow control: the future. J Aircr 38:402–418. https://doi.org/10.2514/2.2796

    Article  Google Scholar 

  • Ghouila-Houri C, Gerbedoen JC, Claudel J, Gallas Q, Garnier E, Merlen A, Viard R, Talbi A, Pernod P (2016a) Wall shear stress and flow direction thermal MEMS sensor for separation detection and flow control applications. Procedia Eng 168:774–777. https://doi.org/10.1016/j.proeng.2016.11.278

    Article  Google Scholar 

  • Ghouila-Houri C, Claudel J, Gerbedoen JC, Gallas Q, Garnier E, Merlen A, Viard R, Talbi A, Pernod P (2016b) High temperature gradient micro-sensor for wall shear stress and flow direction measurements. Appl Phys Lett 109:1–6. https://doi.org/10.1063/1.4972402

    Article  Google Scholar 

  • Ghouila-Houri C, Gallas Q, Garnier E, Merlen A, Viard R, Talbi A, Pernod P (2017a) High temperature gradient calorimetric wall shear stress micro-sensor for flow separation detection. Sens Actuat A Phys 266:232–241. https://doi.org/10.1016/j.sna.2017.09.030

    Article  Google Scholar 

  • Ghouila-Houri C, Gallas Q, Garnier E, Merlen A, Viard R, Talbi A, Pernod P (2017b) Wall shear stress calorimetric micro-sensor designed for flow separation detection and active flow control. Proceedings 1:376. https://doi.org/10.3390/proceedings1040376

    Article  Google Scholar 

  • Ghouila-Houri PPC, Viard R, Gallas Q, Garnier E, Talbi A (2018) High temperature gradient wall shear stress micro-sensors for flow separation control. In: AIAA Aviat. Forum, 2018 Flow Control Conf., Atlanta, Georgia

  • Goldstein S (1996) Fluid mechanics measurements, 2nd edn. Hemisphere, New York

    Google Scholar 

  • Gould D, Sturm H, Lang W (2012) Thermoelectric flow sensor integrated into an inductively powered wireless system. IEEE Sens J 12:1891–1892. https://doi.org/10.1109/JSEN.2011.2179934

    Article  Google Scholar 

  • Haneef I, Coull JD, Ali SZ, Udrea F, Hodson HP (2008) Laminar to turbulent flow transition measurements using an array of SOI-CMOS MEMS wall shear stress sensors. Proc IEEE Sens. https://doi.org/10.1109/ICSENS.2008.4716382

    Article  Google Scholar 

  • Haritonidis JH (1989) The measurement of wall shear stress. Adv fluid mech meas. Springer, pp 229–261

    Google Scholar 

  • Hejun H, Bogue R (2007) MEMS sensors: past, present and future. Sens Rev 27:7–13. https://doi.org/10.1108/02602280710729068

    Article  Google Scholar 

  • Higuchi H (1983) A miniature, directional surface-fence gage for three-dimensional turbulent boundary layer measurements. In: AIAA 16th Fluid Plasmsa Dyn. Conf

  • Higuchi H (1985) A miniature, directional surface-fence gage. AIAA J 23:1195–1196

    Article  Google Scholar 

  • Ho C-M, Tai Y-C (1996) REVIEW: MEMS and its applications for flow control. J Fluids Eng 118:437. https://doi.org/10.1115/1.2817778

    Article  Google Scholar 

  • Houri CG, Claudel J, Gerbedoen JC, Gallas Q, Garnier E, Viard R, Talbi A, Pernod P, Houri CG, Claudel J, Gerbedoen JC, Gallas Q, Garnier E (2016) Very high aspect ratio hot-wire based MEMS thermal sensor for near wall turbulent flow measurement with high sensitivity and low power consumption To cite this version: HAL Id: hal-01396294 turbulent flow measurement with high sensitivity and low power

  • Houri CG, Sindjui R, Gallas Q, Garnier E, Merlen A, Viard R, Talbi A, Pernod P (2017) Original MEMS wall shear stress sensors developed for separation detection and active flow control on a flap model Résumé: abstract

  • Huijsing JH, Van Oudheusden BW (1988) Integrated flow friction sensor. Sens Actuat 15:135–144

    Article  Google Scholar 

  • Jack Chen CL, Engel J, Chen N, Pandya S, Coombs S (2006) Artificial lateral line and hydrodynamic object tracking. In: 19th IEEE Int. Conf. MEMS, IEEE, pp 694–697

  • Jiang F, Tai Y-C, Gupta B, Goodman R, Tung S, Huang J-B, Ho C-M (1996) A surface-micromachined shear stress imager. In: Proc. Ninth Int. Work. Micro Electromechanical Syst, pp 110–115. https://doi.org/10.1109/MEMSYS.1996.493838

  • Jiang F, Bin Lee G, Tai YC, Ho CM (2000a) Flexible micromachine-based shear-stress sensor array and its application to separation-point detection. Sens Actuat A Phys. 79:194–203. https://doi.org/10.1016/S0924-4247(99)00277-0

    Article  Google Scholar 

  • Jiang F, Xu Y, Weng T, Han Z, Tai Y-C, Huang A, Ho C-M, Newbern S (2000b) Flexible shear stress sensor skin for aerodynamics applications. In: Proc. IEEE Thirteen. Annu. Int. Conf. Micro Electro Mech. Syst, pp 364–369. https://doi.org/10.1109/MEMSYS.2000.838544

  • Kalvesten E (1996) Pressure and wall shear stress sensors for turbulence measurements. Royal Institute of Technology, Stockholm

    Google Scholar 

  • Kalvesten GSE, Vieider C, Lofdahl L (1995) Integrated pressure-flow sensor for correlation measurements in turbulent gas flows. In: 8th Int. Conf. Solid-State Sensors Actuators Eurosensors IX (Transducers’95), Stockholm, Sweden, pp. 428–431

  • Krijnen GJ et al (2006) Mems based hair flow-sensors as model systems for acoustic percetion studies. Nanotechnology 17:S84–S89

    Article  Google Scholar 

  • Kuo JTW, Yu L, Meng E (2012) Micromachined thermal flow sensors—a review. Micromachines 3:550–573. https://doi.org/10.3390/mi3030550

    Article  Google Scholar 

  • Lee C, Hong G, Ha QP, Mallinson SG (2003) A piezoelectrically actuated micro synthetic jet for active flow control. Sens Actuat A Phys 108:168–174. https://doi.org/10.1016/S0924-4247(03)00267-X

    Article  Google Scholar 

  • Leu TS, Yu JM, Miau JJ, Chen SJ (2016) MEMS flexible thermal flow sensors for measurement of unsteady flow above a pitching wind turbine blade. Exp Therm Fluid Sci 77:167–178. https://doi.org/10.1016/j.expthermflusci.2016.04.018

    Article  Google Scholar 

  • Liepmann HW, Skinner GT (1954) Shearing-stress measurements by use of a heated element, NACA Tech. Note No. 3268 NACA. Washington, DC, USAhttps://doi.org/10.1063/1.1715007

  • Lin Q, Jiang F, Wang XQ, Xu Y, Han Z, Tai YC, Lew J, Ho CM (2004) Experiments and simulations of MEMS thermal sensors for wall shear-stress measurements in aerodynamic control applications. J Micromech Microeng 14:1640–1649. https://doi.org/10.1088/0960-1317/14/12/007

    Article  Google Scholar 

  • Lissaman P (1983) Low Reynolds number airfoils. Annu Rev Fluid Mech 15:223–239

    Article  MATH  Google Scholar 

  • Liu C (2007) Micromachined biomemetic artificial haircell sensors. Bioinspir Biomim 2:S1162–S1169

    Article  Google Scholar 

  • Liu C, Huang JB, Zhu Z, Jiang F, Tung S, Tai YC, Ho CM (1999a) A micromachined flow shear-stress sensor based on thermal transfer principles. J Microelectromech Syst 8:90–98. https://doi.org/10.1109/84.749408

    Article  Google Scholar 

  • Liu C, Huang J, Zhu AZ, Jiang F, Tung S, Tai Y, Ho C (1999b) A micromachined flow shear stress sensor based on thermal transfer principles. 1. Introduction. J Microelectromechan Syst 8:1–24

    Google Scholar 

  • Liu K, Yuan W, Deng J, Ma B, Jiang C (2007) Detecting boundary-layer separation point with a micro shear stress sensor array. Sens Actuat A Phys 139:31–35. https://doi.org/10.1016/j.sna.2006.11.008

    Article  Google Scholar 

  • Liu P, Zhu R, Que R (2009) A flexible flow sensor system and its characteristics for fluid mechanics measurements. Sensors 9:9533–9543. https://doi.org/10.3390/s91209533

    Article  Google Scholar 

  • Lofdahl GSL, Kalvesten E, Hadzianagnostakis T (1996) An integrated silicon based wall pressure-shear stress sensor for measurements in turbulent flows. In: Am. Soc. Mech. Eng. Dyn. Syst. Control Div. DSC, pp 245–251

  • Löfdahl L, Gad-el-Hak M (1999) MEMS-based pressure and shear stress sensors for turbulent flows. Meas Sci Technol 10:665–686. https://doi.org/10.1088/0957-0233/10/8/302

    Article  Google Scholar 

  • Ludwieg H (1950) Instrument for measuring the wall shearing stress of turbulent boundary layers, NACA Tech. Memo. No. 1284 NACA. Washington, DC, USA. https://doi.org/10.1097/00152192-198911000-00004

  • Ma BH, Ma CY (2016) A MEMS surface fence for wall shear stress measurement with high sensitivity. Microsyst Technol 22:239–246. https://doi.org/10.1007/s00542-015-2450-6

    Article  Google Scholar 

  • Magar KT, Reich GW, Rickey M, Smyers B, Beblo R (2016) Aerodynamic parameter prediction on an airfoil with flap via artificial hair sensors and feedforward neural network, https://doi.org/10.2514/6.2016-1540

  • Maines BH, Davis MB, Bender E, Baker WM, Boespflug MP (2018) Flow separation control computational model for optimization of future naval air vehicles. AIAA Aerosp Sci Meet. https://doi.org/10.2514/6.2018-0560

    Article  Google Scholar 

  • Mangalam T, Moes A (2004) Real-time unsteady loads measurements using hot-film sensors. In: 22nd Appl. Aerodyn. Conf. Exhib

  • Mangalam P, Mangalam A, Flick S (2008) Unsteady aerodynamic observable for gust alleviation and flutter suppression. In: 26th AIAA Appl. Aerodyn. Conf

  • Mangalam M, Moore A, Berg G, Blaylock D, Rumsey M (2010) Real-time aerodynamic observable for wind turbine applications. In: 51st AIAA/ASME/ASCE/AHS/ASC Struct. Struct. Dyn. Mater. Conf

  • Mansoor M, Haneef I, Akhtar S, De Luca A, Udrea F (2015) Silicon diode temperature sensors—a review of applications. Sens Actuat A Phys. https://doi.org/10.1016/j.sna.2015.04.022

    Article  Google Scholar 

  • Maschmann MR, Dickinson BT, Ehlert GJ, Baur JW (2012) Force sensitive carbon nanotube arrays for biologically inspired airflow sensing. Adv Mater 21:94–124

    Google Scholar 

  • Maschmann MR, Ehlert GJ, Dickinson BT, Phillips DM, Ray CW, Reich GW, Baur JW (2014) Bioinspired carbon nanotube fuzzy fiber hair sensor for air-flow detection. Adv Mater Technol. https://doi.org/10.1002/adma.201305285

    Article  Google Scholar 

  • Maschmann MR, Ehlert GJ, Dickinson BT, Ray CW, Reich GW, Baur JW (2014) Bioinspired carbon nanotube fuzzy fiber hair sensor for air-flow detection. Adv Mater 24:3220–3234

    Google Scholar 

  • McClain S, Case L, Brown C (2013) A flap-based gust generation system for hair sensor investigations. In: 51st AIAA Aerosp. Sci. Meet. Incl. New Horizons Forum Aerosp. Expo., Grapevine, TX, USA, p. AIAA-2013-1131

  • McGary PD, Tan L, Zou J, Stadler BJH, Downey PR (2006) Magnetic nanowires for acoustic sensors. J Appl Phys 99

  • Miao M, Ho J (2006) Effect of flexure on aerodynamic propulsive efficiency of flapping flexible airfoil. J Fluids Struct 22:401–419

    Article  Google Scholar 

  • Miau J-J, Tu JK, Chou JH, Lee GB (2006) Sensing flow separation on a circular cylinder by micro-electrical-mechanical-system thermal-film sensors. AIAA J 44:2224–2230. https://doi.org/10.2514/1.17408

    Article  Google Scholar 

  • Miau JJ, Fang CH, Chen MC, Wang CT, Lai YH (2014) Discrete transition of flow over a circular cylinder at precritical Reynolds numbers. AIAA J 52:2576–2586. https://doi.org/10.2514/1.J052909

    Article  Google Scholar 

  • Miau JJ, Leu TS, Yu JM, Tu JK, Wang CT, Lebiga V, Mironov D, Pak A, Zinovyev V, Chung KM (2015) Mems thermal film sensors for unsteady flow measurement. Sens Actuat, A Phys 235:1–13. https://doi.org/10.1016/j.sna.2015.09.030

    Article  Google Scholar 

  • Mohamed A, Watkins S, Clothier R, Abdulrahim M, Massey K, Sabatini R (2014a) Progress in aerospace sciences fixed-wing MAV attitude stability in atmospheric turbulence—part 2: investigating biologically-inspired sensors. Prog Aerosp Sci. https://doi.org/10.1016/j.paerosci.2014.06.002

    Article  Google Scholar 

  • Mohamed A, Massey K, Watkins S, Clothier R (2014b) The attitude control of fixed-wing MAVS in turbulent environments. Prog Aerosp Sci 66:37–48. https://doi.org/10.1016/j.paerosci.2013.12.003

    Article  Google Scholar 

  • Mohamed A, Clothier R, Watkins S, Sabatini R, M, (2014c) Abdulrahim, progress in aerospace sciences fixed-wing MAV attitude stability in atmospheric turbulence, part 1: suitability of conventional sensors. Prog Aerosp Sci. https://doi.org/10.1016/j.paerosci.2014.06.001

    Article  Google Scholar 

  • Mueller J, DeLaurier T (2005) Aerodynamics of small vehicles. Annu Rev Fluid Mech 35:89–111

    Article  MATH  Google Scholar 

  • Naughton JW, Sheplak M (2002) Modern developments in shear-stress measurement. Prog Aerosp Sci 38:515–570. https://doi.org/10.1016/S0376-0421(02)00031-3

    Article  Google Scholar 

  • Noeth N, Keller SS, Boisen A, Knowledge P, Guide P, Kilinc N, Cakmak O, Kosemen A, Ermek E, Ozturk S, Yerli Y, Ozturk ZZ, Urey H, Zhang S, Lou L, Lee C, Fiorillo AS, Critello CD, Pullano AS, Yoo YK, Chae MS, Kang JY, Kim TS, Hwang KS, Lee JH, Palshikar A, Sharma NN, Vashist SK, Azom C, Lavrik NV, Sepaniak MJ, Datskos PG, Lang HP, Hegner M, Gerber C, Chen N, Tucker C, Engel JM, Yang Y, Pandya S, Liu C, Juliet VA (2007) Multifunctionalized cantilever systems for electronic nose applications. Anal Chem 5:1–15. https://doi.org/10.5121/ijnsa.2013.5210

    Article  Google Scholar 

  • Padmanabhan A (1997) Siliucon micomachined sensors and sensor arrays for shear stress measurements in aerodynamic flows. MIT, Cambridge

    Google Scholar 

  • Padmanabhan A, Goldberg HD, Breuer KS, Schmidt MA (1995) A silicon micrbmac ned floating-element shear-stress sensor tical position sensing by photodiodes, 436–439

  • Panta A, Mohamed A, Marino M, Watkins S, Fisher A (2018) Unconventional control solutions for small fixed wing unmanned aircraft. Prog Aerosp Sci 102:122–135. https://doi.org/10.1016/j.paerosci.2018.07.005

    Article  Google Scholar 

  • Papen T, Steffes H (2002) A micro surface fence probe for the application in flow reversal areas. Sens Actuat A Phys. 97:264–270

    Article  Google Scholar 

  • Patel V (1965) Calibration of the Preston tube and limitations on its use in pressure gradients. J Fluid Mech 23:185–208

    Article  Google Scholar 

  • Phillips DM, Ray CW, Hagen BJ, Su W, Baur JW, Reich GW (2015) Detection of flow separation and stagnation points using artificial hair sensors. Smart Mater Struct. https://doi.org/10.1088/0964-1726/24/11/115026

    Article  Google Scholar 

  • Que R, Zhu R (2012) Aircraft aerodynamic parameter detection using micro hot-film flow sensor array and BP neural network identification. Sensors (switzerland) 12:10920–10929. https://doi.org/10.3390/s120810920

    Article  Google Scholar 

  • Ramaprian BR (1985) The use of flush-mounted hot-film gauges tomeasure skin friction in unsteady boundary layers. J Fluid Mech 161:139–159. https://doi.org/10.1017/S0022112085002853

    Article  MATH  Google Scholar 

  • Reich GW, Rickey MR, Beblo RV, Smyers BM (2018) SMASIS2015-8890 aerodynamic characteristics prediction via artificial hair sensor, p 1–9

  • Robin Murphy RC, Robin R (2000) Introduction to AI robotics. The MIT Press, Massachusetts Institute of Technology

  • Rojratsirikul I, Wang P, Gursul Z (2010) Effect of pre-strain and excess length on unsteady fluid–structure interactions of membrane airfoils. J Fluids Struct 26:359–376

    Article  Google Scholar 

  • Sámano R, Viana J, Ferreira N, Loureiro J, Cintra J, Rocha A, Tovar E (2018) Active flow control using dense wireless sensor and actuator networks. Microprocess Microsyst 61:279–295. https://doi.org/10.1016/j.micpro.2018.05.012

    Article  Google Scholar 

  • Sarlo R, Najem JS, Leo DJ (2016) Flow field sensing with bio-inspired artificial hair cell arrays. Sens Actuat B Chem 236:805–814. https://doi.org/10.1016/j.snb.2016.05.091

    Article  Google Scholar 

  • Schober M, Obermeier E, Pirskawetz S, Fernholz HH (2004) A MEMS skin-friction sensor for time resolved measurements in separated flows. Exp Fluids 36:593–599. https://doi.org/10.1007/s00348-003-0728-4

    Article  Google Scholar 

  • Segawa T, Suzuki D, Fujino T, Jukes T, Matsunuma T (2016) Feedback control of flow separation using plasma actuator and FBG sensor. Int J Aerosp Eng. https://doi.org/10.1155/2016/8648919

    Article  Google Scholar 

  • Seo D, Kwon S, Bae N, Kim Y (2013) MEMS wall shear stress sensor for real time onboard monitoring of flow separation over a wing surface. In: 51st AIAA Aerosp. Sci. Meet. Incl. New Horizons Forum Aerosp. Expo, pp 1–8. https://doi.org/10.2514/6.2013-625

  • Seo D, Kim Y, Kwon S (2014) Micro shear-stress sensor for separation detection during flight of unmanned aerial vehicles using a strain gauge. IEEE Sens J 14:1012–1019. https://doi.org/10.1109/JSEN.2013.2292338

    Article  Google Scholar 

  • Shajii J, Ng KY, Schmidt MA (1992) A floating-element shear stress sensor using wafer-bonding technology. J Microelectromech Syst 1:89–94. https://doi.org/10.1109/84.157363

    Article  Google Scholar 

  • Sheplak M, Cattafesta L, Nishida T, McGinley CB (2004) MEMS shear stress sensors: promise and progress. In: 24th AIAA Aerodynamic Meas, Tech. Gr. Test. Conf. AIAA. 1–13

  • Shyy D, Berg W, Ljungqvist M (1999) Flapping and flexible wings for biological and microvehicles. Prog Aerosp Sci 35:455–506

    Article  Google Scholar 

  • Sinha SK (2001) Flow separation control with micro exural. J Aircr 38:496–503

    Article  Google Scholar 

  • Slinker KA, Kondash C, Dickinson BT, Baur JW (2016) CNT-based artificial hair sensors for predictable boundary layer air flow sensing. Adv Mater Technol. https://doi.org/10.1002/admt.201600176

    Article  Google Scholar 

  • Sterbing-D’Angelo CF, Chadha S, Chiu M, Falk C, Xian B, Barcelo W, Zook J, Moss JM (2011) Bat wing sensors support flight control. Proc Natl Acad Sci USA 108:27

    Google Scholar 

  • Sturm H, Lang W (2013) Membrane-based thermal flow sensors on flexible substrates. Sens Actuat A Phys 195:113–122. https://doi.org/10.1016/j.sna.2013.03.004

    Article  Google Scholar 

  • Sturm H, Dumstorff G, Busche P, Westermann D, Lang W (2012) Boundary layer separation and reattachment detection on airfoils by thermal flow sensors. Sensors (switzerland) 12:14292–14306. https://doi.org/10.3390/s121114292

    Article  Google Scholar 

  • Su W, Reich GW (2016) Artificial hair sensor designs for flow measurement of UAVs with different scales, 9803-98031Whttps://doi.org/10.1117/12.2219188

  • Sun B, Ma B, Yan Y, Jiang C, Yuan W, Xue X, Liu G, Fang Y (2017) A flexible hot-film shear stress sensor array and its application to airfoil separation detection. IEEE Sensors. https://doi.org/10.1109/ICSENS.2017.8234140

    Article  Google Scholar 

  • Tai Y (1997) Aerodynamic control of a delta-wing using, sensors and actuators, pp 21–26

  • Tokutake H (2007) Flow control with pitching motion of UAV using MEMS flow sensors, pp 1–15

  • Tung S, Maines B, Jiang F, Tsao T (2004) Development of a MEMS-based control system for compressible flow separation. J Microelectromech Syst 13:91–99. https://doi.org/10.1109/JMEMS.2003.823228

    Article  Google Scholar 

  • Vahid Qaradaghi SP, Mahdavi M, Ramezany A (2016) MEMS resonant sensors for real-time thin film shear stress monitoring. In: IEEE Conf. Proc

  • Van Oudheusden B (1992) Silicon thermal flow. Sens Sens Actuat A Phys 30:5–26

    Article  Google Scholar 

  • Wang Y (2006) On exploring application of MEMS in aerodynamic flow control. In: Proc. CANEUS2006, Toulouse, France, 2006, pp. 1–5

  • Weiss J, Schwaab Q, Boucetta Y, Giani A, Guigue C, Combette P, Charlot B (2017) Simulation and testing of a MEMS calorimetric shear-stress sensor. Sens Actuat A Phys 253:210–217. https://doi.org/10.1016/j.sna.2016.11.018

    Article  Google Scholar 

  • Winter KG (1977) An outline of the techniques available for the measurement of skin friction in turbulent boundary layers. Prog Aeronaut Sci 18:1–57

    Article  MathSciNet  Google Scholar 

  • Xiang D, Yang Y, Xu Y, Li Y (2010) MEMS-based shear-stress sensor for skin-friction measurements. In: IEEE Conf. Proc., pp. 1–6

  • Xiong Yu JB, Tao J (2010) A bio-inspired flow sensor. Smart Struct. Mater. 2010:764618

    Google Scholar 

  • Xu Y, Jiang F, Newbern S, Huang A, Ho CM, Tai YC (2003a) Flexible shear-stress sensor skin and its application to unmanned aerial vehicles. Sens Actuat A Phys 105:321–329. https://doi.org/10.1016/S0924-4247(03)00230-9

    Article  Google Scholar 

  • Xu Y, Chong Y, Huang A, Ho C-M (2003b) IC-integrated flexible shear-stress sensor skin. J Microelectromech Syst 12:740–747

    Article  Google Scholar 

  • Yu J-M, Leu T-S, Miau J-J, Chen S-J (2016) MEMS flexible thermal flow sensor for measurement of boundary layer separation. Mod Phys Lett B 30:1650177. https://doi.org/10.1142/S0217984916501773

    Article  Google Scholar 

  • Zhu R, Liu P, Liu XD, Zhang FX, Zhou ZY (2009) A low-cost flexible hot-film sensor system for flow sensing and its application to aircraft. In: Proc. IEEE Int. Conf. Micro Electro Mech. Syst, pp 527–530. https://doi.org/10.1109/MEMSYS.2009.4805435

  • Zhu R, Que R, Liu P (2017) Flexible micro flow sensor for micro aerial vehicles. Front Mech Eng 12:539–545. https://doi.org/10.1007/s11465-017-0427-0

    Article  Google Scholar 

  • Zikmund P, Macík M, Dvořák P, Míkovec Z (2018) Bio-inspired aircraft control. Aircr Eng Aerosp Technol 90:983–991. https://doi.org/10.1108/AEAT-01-2017-0020

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Muzaffar Habib.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Abbas, Z., Mansoor, M., Habib, M. et al. Review: MEMS sensors for flow separation detection. Microsyst Technol 29, 1253–1280 (2023). https://doi.org/10.1007/s00542-023-05513-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00542-023-05513-x

Navigation