Skip to main content
Log in

Flexible micro flow sensor for micro aerial vehicles

  • Research Article
  • Published:
Frontiers of Mechanical Engineering Aims and scope Submit manuscript

Abstract

This article summarizes our studies on micro flow sensors fabricated on a flexible polyimide circuit board by a low-cost hybrid process of thin-film deposition and circuit printing. The micro flow sensor has merits of flexibility, structural simplicity, easy integrability with circuits, and good sensing performance. The sensor, which adheres to an object surface, can detect the surface flow around the object. In our study, we install the fabricated micro flow sensors on micro aerial vehicles (MAVs) to detect the surface flow variation around the aircraft wing and deduce the aerodynamic parameters of the MAVs in flight. Wind tunnel experiments using the sensors integrated with the MAVs are also conducted.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Van Putten A F P, Middelhoek S. Integrated silicon anemometer. Electronics Letters, 1974, 10(21): 425–426

    Article  Google Scholar 

  2. Chen J, Fan Z, Zou J, et al. Two-dimensional micromachined flow sensor array for fluid mechanics studies. Journal of Aerospace Engineering, 2003, 16(2): 85–97

    Article  Google Scholar 

  3. Van Baar J J, Wiegerink R J, Lammerink T S J, et al. Micromachined structures for the thermal measurements of fluid and flow parameters. Journal of Micromechanics and Microengineering, 2001, 11(4): 311–318

    Article  Google Scholar 

  4. Liu C, Huang J, Zhu Z, et al. A micromachined flow shear-stress sensor based on thermal transfer principles. Journal of Microelectromechanical Systems, 1999, 8(1): 90–99

    Article  Google Scholar 

  5. Liu P, Zhu R, Que R. A flexible flow sensor system and its characteristics for fluid mechanics measurements. Sensors (Basel), 2009, 9(12): 9533–9543

    Article  Google Scholar 

  6. Xu Y, Jiang F, Newbern S, et al. Flexible shear-stress sensor skin and its application to unmanned aerial vehicle. Sensors and Actuators A: Physical, 2003, 105(3): 321–329

    Article  Google Scholar 

  7. Buder U, Petz R, Kittel M, et al. AeroMEMS polyimide based wall double hot-wire sensors for flow separation detection. Sensors and Actuators A: Physical, 2008, 142(1): 130–137

    Article  Google Scholar 

  8. Lian Y, Shyy W, Viieru D, et al. Membrane wing aerodynamics for micro air vehicles. Progress in Aerospace Sciences, 2003, 39(6–7): 425–465

    Article  Google Scholar 

  9. Fang Z. Aircraft Flight Dynamics and Automatic Flight Control. Beijing: National Defense Industry Press, 1999 (in Chinese)

    Google Scholar 

  10. Hagen F W, Seidel H. Deutsche airbus flight test of Rosemount smart probe for distributed air data systems. IEEE Aerospace and Electric Systems Magazine, 1994, 9(4): 7–14

    Article  Google Scholar 

  11. Callegari S, Talamelli A, Zagnoni M, et al. Aircraft angle of attack and air speed detection by redundant strip pressure sensors. In: Proceedings of IEEE Sensors. Vienna, 2004, 24–27

    Google Scholar 

  12. Callegari S, Zagnoni M, Golfarelli A, et al. Experiments on aircraft flight parameter detection by on-skin sensors. Sensors and Actuators A: Physical, 2006, 130–131: 155–165

    Article  Google Scholar 

  13. Whitmore S A. Development of a pneumatic high-angle-of-attack flush airdata sensing (HI-FADS) system. SAE Technical Paper 912142. 1991

    Google Scholar 

  14. Que R, Zhu R. A two-dimensional flow sensor with integrated micro thermal sensing elements and BP neural network. Sensors (Basel), 2014, 14(1): 564–574

    Article  Google Scholar 

  15. Que R, Zhu R. A compact flexible thermal flow sensor for detecting two-dimensional flow vector. IEEE Sensors Journal, 2015, 15(3): 1931–1936

    Article  Google Scholar 

  16. Zhu R, Liu P, Liu X, et al. A low-cost flexible hot-film sensor system for flow sensing and its application to aircraft. In: Proceedings of IEEE 22nd International Conference on Micro Electro Mechanical Systems. Sorrento, 2009, 527–530

    Google Scholar 

  17. Que R, Zhu R. Aircraft aerodynamic parameter detection using micro hot-film flow sensor array and BP neural network identification. Sensors, 2012, 12(8): 10920–10929

    Article  Google Scholar 

  18. Bruun H H. Hot-wire Anemometry Principles and Signal Analysis. New York: Oxford University Press, 1995

    Google Scholar 

  19. Que R, Zhu R, Wei Q, et al. Temperature compensation for thermal anemometers using temperature sensors independent of flow sensors. Measurement Science & Technology, 2011, 22(8): 085404

    Article  Google Scholar 

  20. Xu Y, Tai Y, Huang A, et al. IC-integrated flexible shear-stress sensor skin. Journal of Microelectromechanical Systems, 2003, 12 (5): 740–747

    Article  Google Scholar 

  21. Choisnet J, Collot L, Hanson N. Method for determining aerodynamic parameters and method for detecting failure of a probe used for determining aerodynamic parameters. US Patent, 7051586, 2006-05-30

    Google Scholar 

  22. Zhang F, Zhu R, Liu P, et al. A novel micro air vehicle with flexible wing integrating with on-board electronic devices. In: Proceedings of 2008 IEEE International Conferences on Robotics, Automation and Mechatronics. IEEE, 2008, 252–257

    Chapter  Google Scholar 

  23. Zhang F, Zhu R, Zhou Z. Experiment research on aerodynamics of flexible wing MAV. Acta Aeronautica et Astronautica Sinica, 2008, 30(6): 1440–1446 (in Chinese)

    Google Scholar 

  24. Fei H, Zhu R, Zhou Z, et al. Aircraft flight parameters detection based on neural network using multiple hot-film flow speed sensors. Smart Materials and Structures, 2007, 16(4): 1239–1245

    Article  Google Scholar 

  25. Clifford L. Neural Networks: Theoretical Foundations and Analysis. New York: IEEE, 1992

    Google Scholar 

Download references

Acknowledgements

This work was financially supported by the National High-Tech R&D Program (863 Program) of China (Grant No. 2006AA0 4Z257).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rong Zhu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhu, R., Que, R. & Liu, P. Flexible micro flow sensor for micro aerial vehicles. Front. Mech. Eng. 12, 539–545 (2017). https://doi.org/10.1007/s11465-017-0427-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11465-017-0427-0

Keywords

Navigation