Skip to main content
Log in

Size-dependent dynamics of double-microbeam systems with various boundary conditions via modified couple stress theory

  • Technical Paper
  • Published:
Microsystem Technologies Aims and scope Submit manuscript

Abstract

This article examines the free size-dependent vibration behaviour of an Euler–Bernoulli type double-microbeam system, made of two microbeams elastically connected, with simply supported, clamped–clamped and clamped–pinned boundary conditions using an assumed-mode expansion technique (AMET) along with finite-element verifications; effects of altering the couple-stress-tensor-related parameter and the stiffness coefficient of the elastic connection are studied. The double-microbeam problem is formulated nonlinearly utilising Hamilton’s principle, alongside the modified couple stress theory (MCST), and energy terms. Employing the AMET, the free vibration characteristics were obtained through solving motion equations. For the double-microbeam system and the elastic connection, a finite-element method (FEM) based model and simulations are developed which enabled us in a partial verification of our results; the agreement is excellent. Moreover, another set of partial verifications is performed with available data in the literature by neglecting one of the microbeams and the spring connection. The study revealed increasing either the couple-stress-tensor-related parameter or stiffness coefficient of the elastic connection increases the natural frequencies of the double-microbeam system. It is also found that both the microbeams vibrate in the same manner in the first mode expansion and out of phase by 180° in the second mode expansion. Altering the boundary effect from pinned–pinned to clamped–pinned, and again to clamped–clamped was found to increase the natural frequencies of the double-microbeam system accordingly.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  • Abouelregal AE, Zenkour AM (2015) Generalized thermoelastic vibration of a microbeam with an axial force. Microsyst Technol 21:1427–1435

    Article  Google Scholar 

  • Afrang S, Abbaspour-Sani E (2006) A low voltage MEMS structure for RF capacitive switches. Progress Electromagn Res 65:157–167

    Article  Google Scholar 

  • Akbaş ŞD (2016) Analytical solutions for static bending of edge cracked micro beams. Struct Eng Mech 59:579–599

    Article  Google Scholar 

  • Akbaş ŞD (2017) Free vibration of edge cracked functionally graded microscale beams based on the modified couple stress theory. Int J Struct Stab Dyn 17:1750033

    Article  MathSciNet  Google Scholar 

  • Akbaş SD (2018) Forced vibration analysis of cracked functionally graded microbeams. Adv Nano Res 6:39–55

    Google Scholar 

  • Akgöz B, Civalek Ö (2012) Analysis of micro-sized beams for various boundary conditions based on the strain gradient elasticity theory. Arch Appl Mech 82:423–443

    Article  MATH  Google Scholar 

  • Asghari M, Ahmadian M, Kahrobaiyan M et al (2010) On the size-dependent behavior of functionally graded micro-beams. Mater Des 1980–2015(31):2324–2329

    Article  Google Scholar 

  • Atanasov MS, Karličić D, Kozić P et al (2017) Thermal effect on free vibration and buckling of a double-microbeam system. Facta Univ Ser Mech Eng 15:45–62

    Google Scholar 

  • Bao M-H (2000) Introduction to micro mechanical transducers. Handbook of sensors and actuators. Elsevier, Oxford, pp 1–21

    Google Scholar 

  • Bataineh AM, Younis MI (2015) Dynamics of a clamped–clamped microbeam resonator considering fabrication imperfections. Microsyst Technol 21:2425–2434

    Article  Google Scholar 

  • Boisen A, Dohn S, Keller SS et al (2011) Cantilever-like micromechanical sensors. Rep Prog Phys 74:036101

    Article  Google Scholar 

  • Cao Y, Xi Z (2019) A review of MEMS inertial switches. Microsyst Technol 25:4405–4425

    Article  Google Scholar 

  • Damya A, Abbaspour Sani E, Rezazadeh G (2020) An innovative piezoelectric energy harvester using clamped–clamped beam with proof mass for WSN applications. Microsyst Technol 26:3203–3211

    Article  Google Scholar 

  • Darvishvand A, Zajkani A (2019) A new model for permanent flexural deflection of cantilever MEMS actuator by conventional mechanism-based strain gradient plasticity framework. Microsyst Technol 25:4277–4289

    Article  MATH  Google Scholar 

  • Farokhi H, Ghayesh MH, Amabili M (2013) Nonlinear dynamics of a geometrically imperfect microbeam based on the modified couple stress theory. Int J Eng Sci 68:11–23

    Article  MathSciNet  MATH  Google Scholar 

  • Ghasemi S, Afrang S, Rezazadeh G et al (2020) On the mechanical behavior of a wide tunable capacitive MEMS resonator for low frequency energy harvesting applications. Microsyst Technol 26:2389–2398

    Article  Google Scholar 

  • Ghayesh MH (2012) Nonlinear dynamic response of a simply-supported Kelvin-Voigt viscoelastic beam, additionally supported by a nonlinear spring. Nonlinear Anal Real World Appl 13:1319–1333

    Article  MathSciNet  MATH  Google Scholar 

  • Ghayesh MH (2019a) Dynamical analysis of multilayered cantilevers. Commun Nonlinear Sci Numer Simul 71:244–253

    Article  MathSciNet  MATH  Google Scholar 

  • Ghayesh MH (2019b) Mechanics of viscoelastic functionally graded microcantilevers. Eur J Mech A/Solids 73:492–499

    Article  MathSciNet  MATH  Google Scholar 

  • Ghayesh MH (2019c) Nonlinear oscillations of FG cantilevers. Appl Acoust 145:393–398

    Article  MathSciNet  Google Scholar 

  • Ghayesh MH (2019d) Viscoelastic dynamics of axially FG microbeams. Int J Eng Sci 135:75–85

    Article  MathSciNet  MATH  Google Scholar 

  • Ghayesh MH (2019e) Viscoelastic mechanics of Timoshenko functionally graded imperfect microbeams. Compos Struct 225:110974

    Article  Google Scholar 

  • Ghayesh MH, Amabili M (2013) Nonlinear vibrations and stability of an axially moving Timoshenko beam with an intermediate spring support. Mech Mach Theory 67:1–16

    Article  Google Scholar 

  • Ghayesh MH, Farokhi H, Alici G (2015) Subcritical parametric dynamics of microbeams. Int J Eng Sci 95:36–48

    Article  MathSciNet  MATH  Google Scholar 

  • Godara RK, Sharma AK, Joshi N et al (2020) A novel capacitive mass sensor using an open-loop controlled microcantilever. Microsyst Technol 26:2977–2987

    Article  Google Scholar 

  • Guha K, Laskar NM, Gogoi HJ et al (2020) A new analytical model for switching time of a perforated MEMS switch. Microsyst Technol 26:3143–3152

    Article  Google Scholar 

  • Haberstroh E, Brandt M (2002) Determination of mechanical properties of thermoplastics suitable for micro systems. Macromol Mater Eng 287:881–888

    Article  Google Scholar 

  • Hadjesfandiari AR, Dargush GF (2011) Couple stress theory for solids. Int J Solids Struct 48:2496–2510

    Article  Google Scholar 

  • Hong Y, Wang L (2019) Stability and nonplanar buckling analysis of a current-carrying mircowire in three-dimensional magnetic field. Microsyst Technol 25:4053–4066

    Article  Google Scholar 

  • Kong S, Zhou S, Nie Z et al (2008) The size-dependent natural frequency of Bernoulli-Euler micro-beams. Int J Eng Sci 46:427–437

    Article  MATH  Google Scholar 

  • Lang W (1999) Reflexions on the future of microsystems. Sens Actuators A 72:1–15

    Article  Google Scholar 

  • Li Z, He Y, Lei J et al (2019) Experimental investigation on size-dependent higher-mode vibration of cantilever microbeams. Microsyst Technol 25:3005–3015

    Article  Google Scholar 

  • Ma H, Gao X-L, Reddy J (2008) A microstructure-dependent Timoshenko beam model based on a modified couple stress theory. J Mech Phys Solids 56:3379–3391

    Article  MathSciNet  MATH  Google Scholar 

  • Mehar K, Panda SK (2020) Nonlinear deformation and stress responses of a graded carbon nanotube sandwich plate structure under thermoelastic loading. Acta Mech 231:1105–1123

    Article  MathSciNet  Google Scholar 

  • Mehar K, Mahapatra TR, Panda SK et al (2018) Finite-element solution to nonlocal elasticity and scale effect on frequency behavior of shear deformable nanoplate structure. J Eng Mech 144:04018094

    Google Scholar 

  • Mehar K, Panda SK, Dewangan HC (2020a) Multiscale finite element prediction of thermomechanical flexural strength of nanotube-reinforced hybrid smart composite panel bonded with SMA fibre. Structures. Elsevier, Oxford, pp 2300–2310

    Google Scholar 

  • Mehar K, Panda SK, Sharma N (2020b) Numerical investigation and experimental verification of thermal frequency of carbon nanotube-reinforced sandwich structure. Eng Struct 211:110444

    Article  Google Scholar 

  • Mirjavadi SS, Afshari BM, Barati MR et al (2019) Nonlinear free and forced vibrations of graphene nanoplatelet reinforced microbeams with geometrical imperfection. Microsyst Technol 25:3137–3150

    Article  Google Scholar 

  • Mishra K, Panda SK, Kumar V et al (2020) Analytical evaluation and experimental validation of energy harvesting using low-frequency band of piezoelectric bimorph actuator. Smart Struct Syst 26:391–401

    Google Scholar 

  • Mohammadimehr M, Mohammadi Hooyeh H, Afshari H et al (2017) Free vibration analysis of double-bonded isotropic piezoelectric Timoshenko microbeam based on strain gradient and surface stress elasticity theories under initial stress using differential quadrature method. Mech Adv Mater Struct 24:287–303

    Article  Google Scholar 

  • Nie X, Chen S, Robbins M (2004) A continuum and molecular dynamics hybrid method for micro-and nano-fluid flow. J Fluid Mech 500:55

    Article  MATH  Google Scholar 

  • Ouakad HM, Hawwa MA, Al-Qahtani HM (2013) Modeling the electrostatic deflection of a MEMS multilayers based actuator. Math Probl Eng 2013:959232

    Article  MathSciNet  MATH  Google Scholar 

  • Pandey HK, Hirwani CK, Sharma N et al (2019) Effect of nano glass cenosphere filler on hybrid composite eigenfrequency responses-an FEM approach and experimental verification. Adv Nano Res 7:419–429

    Google Scholar 

  • Pandey HK, Agrawal H, Panda SK et al (2020) Experimental and numerical bending deflection of cenosphere filled hybrid (Glass/Cenosphere/Epoxy) composite. Struct Eng Mech 73:715–724

    Google Scholar 

  • Park S, Gao X (2006) Bernoulli-Euler beam model based on a modified couple stress theory. J Micromech Microeng 16:2355

    Article  Google Scholar 

  • Raiteri R, Grattarola M, Butt H-J et al (2001) Micromechanical cantilever-based biosensors. Sens Actuators B Chem 79:115–126

    Article  Google Scholar 

  • Rajaei A, Vahidi-Moghaddam A, Ayati M et al (2019) Integral sliding mode control for nonlinear damped model of arch microbeams. Microsyst Technol 25:57–68

    Article  MATH  Google Scholar 

  • Reddy J (2011) Microstructure-dependent couple stress theories of functionally graded beams. J Mech Phys Solids 59:2382–2399

    Article  MathSciNet  MATH  Google Scholar 

  • Samaali H, Najar F, Choura S et al (2011) A double microbeam MEMS ohmic switch for RF-applications with low actuation voltage. Nonlinear Dyn 63:719–734

    Article  Google Scholar 

  • Savio D, Falk K, Moseler M (2018) Slipping domains in water-lubricated microsystems for improved load support. Tribol Int 120:269–279

    Article  Google Scholar 

  • Şimşek M, Reddy J (2013) Bending and vibration of functionally graded microbeams using a new higher order beam theory and the modified couple stress theory. Int J Eng Sci 64:37–53

    Article  MathSciNet  MATH  Google Scholar 

  • Wang Y, Kong M, Lee Y-C (2014) Thermal Stress in MEMS. In: Hetnarski RB (ed) Encyclopedia of thermal stresses. Springer, Dordrecht, pp 5237–5248

    Chapter  Google Scholar 

  • Yang F, Chong A, Lam DCC et al (2002) Couple stress based strain gradient theory for elasticity. Int J Solids Struct 39:2731–2743

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mergen H. Ghayesh.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ong, O.Z.S., Ghayesh, M.H. & Hussain, S. Size-dependent dynamics of double-microbeam systems with various boundary conditions via modified couple stress theory. Microsyst Technol 27, 3193–3210 (2021). https://doi.org/10.1007/s00542-020-05183-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00542-020-05183-z

Navigation