Skip to main content
Log in

Influence of part dimension on ageing of injection moulded thermoplastic materials: exemplary studies on amorphous polycarbonate

  • Technical Paper
  • Published:
Microsystem Technologies Aims and scope Submit manuscript

Abstract

Injection moulding of polymer micro parts often affects the inner structure due to process conditions with reduced part dimensions. Consequently, ageing effects can increase with reduced part dimensions. This paper investigates the ageing effects in different scaled tensile bars, exemplarily injection moulded of polycarbonate. The results reveal during the here applied artificial ageing conditions the chemical ageing effects have less influence and primary physical ageing effects take place. A reduction of part dimensions leads to increasing impact of ageing effects for the here investigated polycarbonate.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17

Similar content being viewed by others

References

  • Angelov AK, Coulter JP (2004) Micromolding product manufacture: a progress report. In: SPE Proceedings ANTEC, Chicago, pp 748–751

  • Batzer H (1985) Polymere Werkstoffe I. Chemie und Physik. Thieme, Stuttgart

    Google Scholar 

  • Bibber DM (2004) Micro molding challenges. In: SPE Proceedings ANTEC, Chicago, pp 3703–3711

  • Dlubek G, Pionteck J, Shaikh M, Haeussler L, Thraenert S, Krause-Rehberg R (2007) The free volume in two untreated, pressure-densified, and CO2 gas exposed polymers from positron lifetime and pressure–volume–temperature experiments. e-Polymers 7:1–20

    Article  Google Scholar 

  • Dormann B, Juettner G (2009) High-precision miniatures. Kunststoffe Int 99:22–24

    Google Scholar 

  • Drummer D, Ehrenstein GW, Hopmann C, Vetter K, Meister S, Fischer T, Piotter V, Prokop J (2012) Innovative process technologies for manufacturing thermoplastic micro parts—analysis and comparative assessment. J Plast Technol 8:439–467

    Google Scholar 

  • Ehrenstein GW (2001) Polymeric materials: structure, properties, applications. Hanser, Munich

    Book  Google Scholar 

  • Ehrenstein GW, Pongratz S (2013) Resistance and stability of polymers. Hanser, Munich

    Book  Google Scholar 

  • Eloy JC (2011) Status of the MEMS industry. In: 5th EURIPIDES Forum Helsinki

  • Farrugia P, Vella P, Said L (2014) Design for micro insert moulding: a review. ASME Proc 45042:835–842. https://doi.org/10.1115/DETC2012-70571

    Article  Google Scholar 

  • Giboz J, Copponnex T, Mélé P (2007) Microinjection molding of thermoplastic polymers: a review. J Micromech Microeng 17:96–109. https://doi.org/10.1088/0960-1317/17/6/R02

    Article  Google Scholar 

  • Giboz J, Copponnex T, Mélé P (2009) Microinjection molding of thermoplastic polymers: morphological comparison with conventional injection molding. J Micromech Microeng 19:1–12. https://doi.org/10.1088/0960-1317/19/2/025023

    Article  Google Scholar 

  • Haberstroh E, Brandt M (2002) Determination of mechanical properties of thermoplastics suitable for micro systems. Macromol Math Eng 287:881–888. https://doi.org/10.1002/mame.200290023

    Article  Google Scholar 

  • Ho C, Vu-Khanh T (2003) Effects of time and temperature on physical aging of polycarbonate. Theor Appl Fract Mech 39:107–116. https://doi.org/10.1016/S0167-8442(02)00151-9

    Article  Google Scholar 

  • Jiang L, Zhou M, Ding Y, Zhou Y (2018) Aging induced ductile–brittle–ductile transition in bisphenol A polycarbonate. J Polym Res. https://doi.org/10.1007/s10965-018-1443-4

    Article  Google Scholar 

  • Jones A (1985) Molecular level model for motion and relaxation in glassy polycarbonate. Macromolecules 18:902–906

    Article  Google Scholar 

  • Jungmeier A (2010) Struktur und Eigenschaften spritzgegossener, thermoplastischer Mikroformteile. PhD thesis, University Erlangen-Nuernberg

  • Liu C (2007) Recent developments in polymer MEMS. Adv Mater 19:3783–3790. https://doi.org/10.1002/adma.200701709

    Article  Google Scholar 

  • Meister S (2016) Alterung spritzgegossener thermolastischer Mikrobauteile. PhD thesis, University Erlangen-Nuernberg

  • Meister S, Drummer D (2013) Influence of manufacturing conditions on measurement of mechanical material properties on thermoplastic micro tensile bars. Polym Testing 32:432–437. https://doi.org/10.1016/j.polymertesting.2012.12.006

    Article  Google Scholar 

  • Meister S, Jungmeier A, Drummer D (2012) Long term properties of injection moulded micro-parts. Macromol Mater Eng 297:994–1004. https://doi.org/10.1002/mame.201100379

    Article  Google Scholar 

  • Meister S, Seefried A, Drummer D (2016) Replication quality of micro structures in injection moulded thin wall parts using rapid tooling moulds. Microsyst Technol 22:687–698. https://doi.org/10.1007/s00542-015-2415-9

    Article  Google Scholar 

  • Michaeli W, Spennemann A, Gaertner R (2002) New plastification concepts for micro injection moulding. Microsyst Technol 8:55–57. https://doi.org/10.1016/j.polymertesting.2012.12.006

    Article  Google Scholar 

  • Rudolph N (2009) Druckverfestigung amorpher Thermoplaste. PhD thesis, University Erlangen-Nuernberg

  • Schmiederer D, Schmachtenberg E (2006) Einflüsse auf die Eigenschaften kleiner und dünnwandiger Spritzgussteile. J Plast Technol 2:1–21

    Google Scholar 

  • Soloukhin V, Brokken-Zijp J, van Asselen O, de With G (2003) Physical aging of polycarbonate: elastic modulus, hardness, creep, endothermic peak, molecular weight distribution and infrared data. Macromolecules 36:7585–7597

    Article  Google Scholar 

  • Volynskii AL, Grokhovskaya T, Kulebyakina A, Bolshakova A, Bakeev N (2007) Visualization of structural rearrangements responsible for temperature-induced shrinkage of amorphous polycarbonate after its deformation at different conditions. Polym Sci Series A 49:1198–1209

    Article  Google Scholar 

  • Weidener H, Tilgner R (1980) Alterungsverhalten bei Kunststoffen-Charakterisierung von Alterungszuständen. Kunststoffe 70:837–844

    Google Scholar 

  • White J (2006) Polymer ageing: physics, chemistry or engineering? Time to reflect. C R Chim 9:1396–1408. https://doi.org/10.1016/j.crci.2006.07.008

    Article  Google Scholar 

  • Yang C, Yin XH, Cheng GM (2013) Microinjection molding of microsystem components: new aspects in improving performance. J Micromech Microeng 23:1–21. https://doi.org/10.1088/0960-1317/23/9/093001

    Article  Google Scholar 

Download references

Acknowledgements

The author gratefully acknowledges the German Research Foundation (DFG) for funding the work in DR421/16-1. Special thanks also go to Prof. Dietmar Drummer and the Lehrstuhl für Kunststofftechnik of the University Erlangen-Nürnberg for supporting this work. The author also extends its gratitude to the industrial partners Arburg GmbH & Co. KG and Covestro AG for providing equipment and material.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Steve Meister.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Meister, S. Influence of part dimension on ageing of injection moulded thermoplastic materials: exemplary studies on amorphous polycarbonate. Microsyst Technol 27, 2733–2743 (2021). https://doi.org/10.1007/s00542-020-05020-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00542-020-05020-3

Navigation