Skip to main content
Log in

A 3D printed three-dimensional centrifugal fluidic system for blood separation

  • Technical Paper
  • Published:
Microsystem Technologies Aims and scope Submit manuscript

Abstract

This paper reports a miniature microfluidic system based on centrifugal and gravity actuations for separation of blood cells. The fluidic platform is driven with a motor and controlled using a single-chip micyoco (SCM). Centrifugal force was used both for delivering the blood sample and realizing density gradient centrifugation for separation of red blood cells from plasma. By utilizing the centrifugal force, Coriolis force, Euler’s force, and gravity force in actuation of blood sample, a compact design of three-dimensional fluidic system for flow control was achieved. The centrifugal microfluidic platform was fabricated using 3D printing technology with polymers as structural materials. Because of the strong adhesion of leukocyte and the larger sizes of the blood cells, silica electrospun fiber was used as filter for white cells. In the experiments, the average removal rate of red blood cells is controllable by changing the working parameters. The instrument can separate 20–50 μl plasma at a time. No white cells were found in the plasma after separation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Akagi T, Ichiki T (2008) Cell electrophoresis on a chip: what can we know from the changes in electrophoretic mobility? Anal Bioanal Chem 391(7):2433–2441. https://doi.org/10.1007/s00216-008-2203-9

    Article  Google Scholar 

  • Andersson H, Den Berg AV (2003) Microfluidic devices for cellomics: a review. Sens Actu B Chem 92(3):315–325

    Article  Google Scholar 

  • Bhagat AAS, Bow H, Hou HW et al (2010) Microfluidics for cell separation. Med Biol Eng Comput 48(10):999–1014. https://doi.org/10.1007/s11517-010-0611-4

    Article  Google Scholar 

  • Bhagat AA, Hou HW, Li LD et al (2011) Pinched flow coupled shear-modulated inertial microfluidics for high-throughput rare blood cell separation. J Lab A Chip 11(11):1870

    Article  Google Scholar 

  • Chen X et al (2008) “Microfluidic chip for blood cell separation and collection based on crossflow filtration”. Sens Actu B Chem 5:216–221

    Article  Google Scholar 

  • Chen X, Chen H, Dezhi Wu et al (2018) 3D printed microfluidic chip for multiple anticancer drug combinations. Sens Actu B Chem 276:507–516

    Article  Google Scholar 

  • Davies CN (1973) Air Filtration. Academic Press, London

    Google Scholar 

  • Dow P, Kotz KT, Gruszka S et al (2018) Acoustic separation in plastic microfluidics for rapid detection of bacteria in blood using engineered bacteriophage. Lab Chip 18(6):923–932. https://doi.org/10.1039/c7lc01180f

    Article  Google Scholar 

  • Fu YA, Spence C, Scherer A et al (1999) A microfabricated fluorescence-activated cell sorter. J Nat Biotechnol 17(11):1109–1111. https://doi.org/10.1038/15095

    Article  Google Scholar 

  • Geng Z, Yanrui Ju, Wang W, Li Z (2013) Continuous blood separation utilizing spiral filtration microchannel with gradually varied width and micro-pillar array. Sens Actu B Chem 180:122–129

    Article  Google Scholar 

  • Guo S, Ke Q, Wang H et al (2013) Poly(butylene terephthalate) electrospun/melt-blown composite mats for white blood cell filtration. J Appl Poly Sci 128(6):3652–3659

    Article  Google Scholar 

  • Hampson SM, Rowe W, Christie SDR, Platt M (2018) 3D printed microfluidic device with integrated optical sensing for particle analysis. Sens Actu B Chem 256:1030–1037

    Article  Google Scholar 

  • He Y, Gao Q, Wu W et al (2016) 3D printed paper-based microfluidic analytical devices. Micromachines 7(7):108

    Article  Google Scholar 

  • Kim B, You D, Kim Y-J, Insung Oh, Choi S (2018) Motorized smart pipette for handheld operation of a microfluidic blood plasma separator. Sens Actu B Chem 267:581–588

    Article  Google Scholar 

  • Kobayashi T, Konishi S (2011) Microfluidic chip with serially connected filters for improvement of collection efficiency in blood plasma separation. Sens Actu B Chem 161(1):1176–1183

    Article  Google Scholar 

  • Kuo JN, Lin BY (2018) Microfluidic blood-plasma separation chip using channel size filtration effect. Microsyst Technol 24(4):2063–2070

    Article  MathSciNet  Google Scholar 

  • Lee MG, Shin JH, Choi S, Park J-K (2014) Enhanced blood plasma separation by modulation of inertial lift force. Sens Actu B Chem 190:311–317

    Article  Google Scholar 

  • Liu C-H, Chen C-A, Chen S-J et al (2019) Blood plasma separation using a fidget-spinner. Anal Chem 91(2):1247–1253

    Article  Google Scholar 

  • Nagrath S, Sequist LV, Maheswaran S et al (2011) Isolation of rare circulating tumour cells in cancer patients by microchip technology. J Nature 10:120–260

    Google Scholar 

  • Petersson F, Aberg L, Swärd-Nilsson AM et al (2007) Free flow acoustophoresis: microfluidic-based mode of particle and cell separation. J An Chem 79(14):5117–5123

    Article  Google Scholar 

  • Qu BY, Wu ZY, Fang F et al (2008) A glass microfluidic chip for continuous blood cell sorting by a magnetic gradient without labeling. Anal Bioanal Chem 392(7–8):1317–1324

    Article  Google Scholar 

  • Shen S, Zhang F, Wang S et al (2019) Ultra-low aspect ratio spiral microchannel with ordered micro-bars for flow-rate insensitive blood plasma extraction. Sens Actu B Chem 287:320–328

    Article  Google Scholar 

  • Song Y, Cheng D, Zhao L (2018) Microfluidics: fundamental, devices and applications: fundamentals and applications. Wiley, London (ISBN: 9783527341061)

    Book  Google Scholar 

  • Songjaroen T, Dungchai W, Chailapakul O et al (2012) Blood separation on microfluidic paper-based analytical devices. J Lab A Chip 12(18):3392–3398

    Article  Google Scholar 

  • Toner M, Irimia D (2005) Blood-on-a-chip. J Ann Rev Biomed Eng 7(7):77–103. https://doi.org/10.1146/annurev.bioeng.7.011205.135108

    Article  Google Scholar 

  • Wang MM, Tu E, Raymond DE et al (2005) Microfluidic sorting of mammalian cells by optical force switching. Nat Biotechnol 23(1):83–87

    Article  Google Scholar 

  • Wang L, Kropinski MC, Li PC (2011) Analysis and modeling of flow in rotating spiral microchannels: towards math-aided design of microfluidic systems using centrifugal pumping. J Lab on A Chip 11(12):2097–2108

    Article  Google Scholar 

  • Xia N, Hunt TP, Mayers BT et al (2006) Combined microfluidic-micromagnetic separation of living cells in continuous flow. Biomed Microdevice 8(4):299–308

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wanjun Wang.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Qin, X., Chen, H., Jia, S. et al. A 3D printed three-dimensional centrifugal fluidic system for blood separation. Microsyst Technol 27, 2639–2646 (2021). https://doi.org/10.1007/s00542-020-05012-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00542-020-05012-3

Navigation