Skip to main content

Advertisement

Log in

A powerless iron oxide based magnetometer

  • Technical Paper
  • Published:
Microsystem Technologies Aims and scope Submit manuscript

Abstract

This paper demonstrates a novel device visualizing and determining magnetic fields in six different directions. The device can be used in applications such as remote real estate construction sites requiring an inexpensive and powerless method of detection and determination of a magnetic field. The magnetometer uses magnetic properties of nanostructured iron oxide to aid in visualizing the location, direction and strength of magnetic fields. The device utilizes various sizes of permanent magnets which attract and hold the iron oxide nanoparticles in mini channels when there is no external magnetic field in the environment. Upon exposing to a magnetic field stronger than the magnetic strength of the holding magnet, the particles are repelled toward the external field. The magnetometer was fabricated by making tubes in an acrylic block in three dimensions and six directions, and filling them with iron oxide nanoparticles. The inner ends of the tubes were plugged by various sizes of permanent magnets and the outer ends were sealed by glass sheets. The device was exposed to different external fields created by various permanent magnets and successfully tested using a reference Gauss meter. The device was capable of identifying external magnetic fields up to 1455 Gauss.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  • Auster HU, Glassmeier KH, Magnes W, Aydogar O, Baumjohann W, Constantinescu D, Fischer D, Fornacon KH, Georgescu E, Harvey P, Hillenmaier O (2008) The THEMIS fluxgate magnetometer. Space Sci Rev 141(1–4):235–264

    Google Scholar 

  • Baltag O (2013) Orthogonal fields controlled fluxgate with ferrofluid. Sensor Lett 11(1):102–105

    Google Scholar 

  • Biswal RC (2011) Pure and Pt-loaded gamma iron oxide as sensor for detection of sub ppm level of acetone. Sens Actuators B Chem 157(1):183–188

    Google Scholar 

  • Bower K, Colon R, Karnyski C, Minkel J, Rashidi R (2018) Piezoelectric-based monitoring of restless legs syndrome (RLS). In: International conference on mechatronics and intelligent robotics 2018 May 19. Springer, Cham, pp 923–930

  • Brown P, Beek T, Carr C, O’Brien H, Cupido E, Oddy T, Horbury TS (2012) Magnetoresistive magnetometer for space science applications. Meas Sci Technol 23(2):025902

    Google Scholar 

  • Budker D (2003) A new spin on magnetometry. Nature 422(6932):574–575

    Google Scholar 

  • Budker D, Romalis M (2007) Optical magnetometry. Nat Phys 3(4):227–234

    Google Scholar 

  • Bulte JW, Kraitchman DL (2004) Iron oxide MR contrast agents for molecular and cellular imaging. NMR Biomed 17(7):484–499

    Google Scholar 

  • Cabrera L, Gutierrez S, Menendez N, Morales MP, Herrasti P (2008) Magnetite nanoparticles: electrochemical synthesis and characterization. Electrochim Acta 53(8):3436–3441

    Google Scholar 

  • Cai Y, Zhao Y, Ding X, Fennelly J (2012) Magnetometer basics for mobile phone applications. Electron Prod 54(2):1–3

    Google Scholar 

  • Cochrane CJ, Blacksberg J, Anders MA, Lenahan PM (2016) Vectorized magnetometer for space applications using electrical readout of atomic scale defects in silicon carbide. Sci Rep 6:37077

    Google Scholar 

  • Cui N, Wu W, Zhao Y, Bai S, Meng L, Qin Y, Wang ZL (2012) Magnetic force driven nanogenerators as a noncontact energy harvester and sensor. Nano Lett 12(7):3701–3705

    Google Scholar 

  • Dai J, Yang M, Li X, Liu H, Tong X (2011) Magnetic field sensor based on magnetic fluid clad etched fiber Bragg grating. Opt Fiber Technol 17(3):210–213

    Google Scholar 

  • Duell T, Muehlbauer M, Seitzinger T, Westfall J, Rashidi R (2018) MEMS capacitive sensor for wound monitoring applications. In: IOP conference series: materials science and engineering 2018 September, vol 417(1). IOP Publishing, New York, p 012040

  • Fujimaki N, Tamura H, Imamura T, Hasuo S (1988) A single-chip SQUID magnetometer. IEEE Trans Electron Dev 35(12):2412–2418

    Google Scholar 

  • Gao Y, Huang JP, Liu YM, Gao L, Yu KW, Zhang X (2010) Optical negative refraction in ferrofluids with magnetocontrollability. Phys Rev Lett 104(3):034501

    Google Scholar 

  • Gao R, Jiang Y, Abdelaziz S (2013) All-fiber magnetic field sensors based on magnetic fluid-filled photonic crystal fibers. Opt Lett 38(9):1539–1541

    Google Scholar 

  • Hatipoglu G, Tadigadapa S (2015) Micromachined magnetoflexoelastic resonator based magnetometer. Appl Phys Lett 107(19):192406

    Google Scholar 

  • Hermanek M, Zboril R, Medrik I, Pechousek J, Gregor C (2007) Catalytic efficiency of iron(III) oxides in decomposition of hydrogen peroxide: competition between the surface area and crystallinity of nanoparticles. J Am Chem Soc 129(35):10929–10936

    Google Scholar 

  • Homa D, Pickrell G (2014) Magnetic sensing with ferrofluid and fiber optic connectors. Sensors 14(3):3891–3896

    Google Scholar 

  • Ilmoniemi R, Hari R, Reinikainen K (1984) A four-channel SQUID magnetometer for brain research. Electroencephalogr Clin Neurophysiol 58(5):467–473

    Google Scholar 

  • Ji H, Pu S, Wang X, Yu G (2012) Magnetic field sensing based on V-shaped groove filled with magnetic fluids. Appl Opt 51(8):1010–1020

    Google Scholar 

  • Jian YC, Zhang LF, Huang JP (2006) Magnetophoresis of ferrofluid in microchannel system and its nonlinear effect. Preprint arXiv:physics/0611135

  • Kaushik A, Solanki PR, Ansari AA, Sumana G, Ahmad S, Malhotra BD (2009) Iron oxide-chitosan nanobiocomposite for urea sensor. Sens Actuators B Chem 138(2):572–580

    Google Scholar 

  • Kohout S, Roos J, Keller H (2007) Novel sensor design for torque magnetometry. Rev Sci Instrum 78(1):013903

    Google Scholar 

  • Kominis IK, Kornack TW, Allred JC, Romalis MV (2003) A subfemtotesla multichannel atomic magnetometer. Nature 422(6932):596–599

    Google Scholar 

  • Le Contel O, Leroy P, Roux A, Coillot C, Alison D, Bouabdellah A, Mirioni L, Meslier L, Galic A, Vassal MC, Torbert RB (2016) The search-coil magnetometer for MMS. Space Sci Rev 199(1–4):257–282

    Google Scholar 

  • Lee LP, Char K, Colclough MS, Zaharchuk G (1991) Monolithic 77 K dc SQUID magnetometer. Appl Phys Lett 59(23):3051–3053

    Google Scholar 

  • Leger JM, Bertrand F, Jager T, Le Prado M, Fratter I, Lalaurie JC (2009) Swarm absolute scalar and vector magnetometer based on helium 4 optical pumping. Proc Chem 1(1):634–637

    Google Scholar 

  • Li C, Shen Y, Jia M, Sheng S, Adebajo MO, Zhu H (2008) Catalytic combustion of formaldehyde on gold/iron-oxide catalysts. Catal Commun 9(3):355–361

    Google Scholar 

  • Li Z, Chen S, Zhang S, Guo X, Cao Q (2016) Overhauser magnetometer sensor design for magnetic field observation. In: Radiation detectors: systems and applications XVII 2016 October 3, vol 9969. International Society for Optics and Photonics, New York, p 99690Q

  • Liu Z, Zhao B, Shi Y, Guo C, Yang H, Li Z (2010) Novel nonenzymatic hydrogen peroxide sensor based on iron oxide–silver hybrid submicrospheres. Talanta 81(4–5):1650–1654

    Google Scholar 

  • Liu H, Dong H, Liu Z, Ge J, Bai B, Zhang C (2017) Noise characterization for the FID signal from proton precession magnetometer. J Instrum 12(07):P07019

    Google Scholar 

  • Meyners D, Von Hofe T, Vieth M, Rührig M, Schmitt S, Quandt E (2009) Pressure sensor based on magnetic tunnel junctions. J Appl Phys 105(7):07C914

    Google Scholar 

  • Pang H, Li J, Chen D, Pan M, Luo S, Zhang Q, Luo F (2013) Calibration of three-axis fluxgate magnetometers with nonlinear least square method. Measurement 46(4):1600–1606

    Google Scholar 

  • Qiang Y, Antony J, Sharma A, Nutting J, Sikes D, Meyer D (2006) Iron/iron oxide core–shell nanoclusters for biomedical applications. J Nanopart Res 8(3–4):489–496

    Google Scholar 

  • Rashidi R, Alenezi J, Czechowski J, Niver J, Mohammad S (2019) Graphite-on-paper-based resistive sensing device for aqueous chemical identification. Chem Pap 73(11):2845–2855

    Google Scholar 

  • Roetenberg D, Slycke P, Ventevogel A, Veltink PH (2007) A portable magnetic position and orientation tracker. Sens Actuators B Phys 135(2):426–432

    Google Scholar 

  • Russenschuck S (2017) Rotating-and translating-coil magnetometers for extracting pseudo-multipoles in accelerator magnets. COMPEL Int J Comput Math Electr Electron Eng 36:1552–1567

    Google Scholar 

  • Schwindt PD, Knappe S, Shah V, Hollberg L, Kitching J, Liew LA, Moreland J (2004) Chip-scale atomic magnetometer. Appl Phys Lett 85(26):6409–6411

    Google Scholar 

  • Tartaj P, Morales MP, Gonzalez-Carreño T, Veintemillas-Verdaguer S, Serna CJ (2011) The iron oxides strike back: from biomedical applications to energy storage devices and photoelectrochemical water splitting. Adv Mater 23(44):5243–5249

    Google Scholar 

  • Taylor JM, Cappellaro P, Childress L, Jiang L, Budker D, Hemmer PR, Yacoby A, Walsworth R, Lukin MD (2008) High-sensitivity diamond magnetometer with nanoscale resolution. Nat Phys 4(10):810–816

    Google Scholar 

  • Teja AS, Koh PY (2009) Synthesis, properties, and applications of magnetic iron oxide nanoparticles. Prog Cryst Growth Charact Mater 55(1–2):22–45

    Google Scholar 

  • Uddin MA, Tsuda H, Wu S, Sasaoka E (2008) Catalytic decomposition of biomass tars with iron oxide catalysts. Fuel 87(4–5):451–459

    Google Scholar 

  • Wang YX (2011) Superparamagnetic iron oxide based MRI contrast agents: current status of clinical application. Quant Imaging Med Surg 1(1):35

    Google Scholar 

  • Weinstock H (ed) (2012) SQUID sensors: fundamentals, fabrication and applications. Springer

  • Xu Q, Seidel M, Paprotny I, White RM, Wright PK (2011) Integrated centralized electric current monitoring system using wirelessly enabled non-intrusive ac current sensors. In: SENSORS, IEEE 2011 October 28. IEEE, New York, pp 1998–2001

  • Zhou C, Ding L, Wang D, Kuang Y, Jiang D (2011) Thinned fiber Bragg grating magnetic field sensor with magnetic fluid. In: Photonic microdevices/microstructures for sensing III 2011 May 14, vol 8034. International Society for Optics and Photonics, New York, p 803409

  • Zu P, Chan CC, Lew WS, Hu L, Jin Y, Liew HF, Chen LH, Wong WC, Dong X (2012) Temperature-insensitive magnetic field sensor based on nanoparticle magnetic fluid and photonic crystal fiber. IEEE Photonics J 4(2):491–498

    Google Scholar 

Download references

Funding

This research was supported by Alfred State Applied Learning Program.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Reza Rashidi.

Ethics declarations

Conflict of interest

All authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Coughlin, T., Rashidi, R. A powerless iron oxide based magnetometer. Microsyst Technol 26, 2487–2498 (2020). https://doi.org/10.1007/s00542-020-04789-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00542-020-04789-7

Navigation