Skip to main content
Log in

Synthesis of nanostructured based carbon nanowalls at low temperature using inductively coupled plasma chemical vapor deposition (ICP-CVD)

  • Technical Paper
  • Published:
Microsystem Technologies Aims and scope Submit manuscript

Abstract

Synthesis of carbon nanowalls using inductively coupled plasma chemical vapor deposition is investigated in this article. This paper reports the growth of nanowalls at low temperature with effective results. Xylene was tested in combination with Ni film as catalyst to grow nanowalls. Various substrates, parameters and conditions were used for the growth purposes. Results obtained with xylene were promising for the growth of nanostructured based carbon nanowalls in the investigated parameter range. Results has been confirmed using scanning electron microscope, optical emission spectroscopy and Raman spectroscopy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Beumer K (2016) Broadening nanotechnology’s impact on development. Nat Nanotechnol 11:398–400

    Article  Google Scholar 

  • Chughtai MT, Alsaif H, Haleem MA, Alshammari AA, Khan MI, Usman M (2018) Holding arrangement for end polishing of single mode and other optical fibers. J Opt Technol 85(12):808–811

    Article  Google Scholar 

  • Dong H, Yang X, Chen H, Khan MI, Lin F (2018) A 0.3–3.5 GHz Active-feedback low-noise amplifier with linearization design for wideband receivers. AEU Int J Electron Commun (Elsevier) 84:192–198

    Article  Google Scholar 

  • Grzybowski BA, Huck WTS (2016) The nanotechnology of life-inspired systems. Nat Nanotechnol 11:585–592

    Article  Google Scholar 

  • Hofmann S, Ducati C, Robertson J (2003) Low-temperature growth of carbon nanotubes by plasma-enhanced chemical vapor deposition. Appl Phys Lett 83:135

    Article  Google Scholar 

  • Iijima S (1991) Helical microtubules of graphitic carbon. Nature 354:56

    Article  Google Scholar 

  • Itoh T, Shimabukuro S, Kawamura S, Nonomura S (2006) Thin Solid Films 501:314

    Article  Google Scholar 

  • Kaul AB, Coles JB, Eastwood M, Green RO, Bandaru PR (2013) Ultra-high optical absorption efficiency from the ultraviolet to the infrared using multi-walled carbon nanotube ensembles. Small 9:1058–1065

    Article  Google Scholar 

  • Khan MI, Lin F (2014a) Impact of transistor model accuracy on the harmonic spectra emitted by logic circuits. In: 12th IEEE international conference on solid-state and integrated circuit technology (ICSICT), China

  • Khan MI, Lin F (2014b) Comparative analysis and design of harmonic aware low power latches and flip-flops. In: IEEE 10th international conference on electron devices and solid-state circuits (EDSSC), Chengdu China

  • Khan MI, Khan AM, Nouman A, Azhar MI, Saleem MK (2012) pH Sensing materials for MEMS sensors and detection techniques. In: 2012 International conference on solid-state and integrated circuit (ICSIC 2012), Singapore, vol 32, pp 18–22

  • Khan MI, Buzdar AR, Lin F (2014a) Self-heating and reliability issues in FinFET and 3D ICs. In: 12th IEEE international conference on solid-state and integrated circuit technology (ICSICT), China

  • Khan MI, Buzdar AR, Lin F (2014b) Ballistic transport modeling in advanced transistors. In: 12th IEEE international conference on solid-state and integrated circuit technology (ICSICT), Guilin, China

  • Khan MI, Shoukat R, Mukherjee K, Dong H (2017a) A review on pH sensitive materials for sensors and detection methods. Microsyst Technol 23(10):4391–4404. https://doi.org/10.1007/s00542-017-3495-5(Springer)

    Article  Google Scholar 

  • Khan MI, Qamar A, Shabbir F, Shoukat R (2017b) Design, development and implementation of low power and high speed A/D converter in submicron CMOS technology. Microsyst Technol (Springer) 23(12):6005–6014

    Article  Google Scholar 

  • Khan MI, Shoukat R, Mukherjee K, Dong H (2018a) Analysis of harmonic contents of switching waveforms emitted by the ultra-high speed digital CMOS integrated circuits for use in future micro/nano systems applications. Microsyst Technol 24(2):1201–1206. https://doi.org/10.1007/s00542-017-3486-6(Springer)

    Article  Google Scholar 

  • Khan MI, Dong H, Shabbir F, Shoukat R (2018b) Embedded passive components in advanced 3D chips and micro/nano electronic systems. J Microsyst Technol 24(2):869–877. https://doi.org/10.1007/s00542-017-3586-3(Springer)

    Article  Google Scholar 

  • Kobayashi K, Tanimura M, Nakai H, Yoshimura A, Kojima K, Tachibana M (2007) Nanographite domains in carbon nanowalls. J Appl Phys 101:094306

    Article  Google Scholar 

  • Krivchenko VA, Dvorkin VV, Dzbanovsky NN, Timofeyev MA, Stepanov AS, Rakhimov AT, Suetin NV, Vilkov OYu, Yashina LV (2012) Evolution of carbon film structure during its catalyst-free growth in the plasma of direct current glow discharge. Carbon 50:1477–1487

    Article  Google Scholar 

  • Krivchenko VA, Evlashin SA, Mironovich KV, Verbitskiy NI, Nefedov A, Wöll C, Kozmenkova AY, Suetin NV, Svyakhovskiy SE, Vyalikh DV, Rakhimov AT, Egorov AV, Yashina LV (2013) Carbon nanowalls: the next step for physical manifestation of the black body coating. Sci Rep 3:1–6

  • Li X, Cao A, Jung YJ, Vajtai R, Ajayan PM (2005) Bottom-up growth of carbon nanotube multilayers: unprecedented growth. Nano Lett 5:1997–2000

    Article  Google Scholar 

  • Liu X, Baronian KHR, Downard AJ (2009) Direct growth of vertically aligned carbon nanotubes on a planar carbon substrate by thermal chemical vapour deposition. Carbon 47:500–506

    Article  Google Scholar 

  • Mizuno K, Ishii J, Kishida H, Hayamizu Y, Yasuda S, Futaba DN, Yumura M, Hata K (2009) A black body absorber from vertically aligned single-walled carbon nanotubes. Proc Natl Acad Sci 106:6044–6047

    Article  Google Scholar 

  • Mori S, Ueno T, Suzuki M (2011) Synthesis of carbon nanowalls by plasma-enhanced chemical vapor deposition in a CO/H2 microwave discharge system. Diam Relat Mater 20(8):1129–1132

    Article  Google Scholar 

  • Stohr U, Vulto P, Hoppe P, Urban GA, Reinecke H (2008) High-resolution permanent photoresist laminate for microsystem applications. J Micro/Nanolithography MEMS MOEMS 7(3):033009

    Article  Google Scholar 

  • Shoukat R, Khan MI (2017) Growth of nanotubes using IC-PECVD as benzene carbon carrier. Microsyst Technol 23(12):5447–5453. https://doi.org/10.1007/s00542-017-3353-5(Springer)

    Article  Google Scholar 

  • Shoukat R, Khan MI (2018a) Synthesis of vertically aligned carbon nanofibers using inductively coupled plasma enhanced chemical vapor deposition. Electr Eng (Springer) 100(2):997–1002

    Article  Google Scholar 

  • Shoukat R, Khan MI (2018b) Design and development of a clip building block system for MEMS”. Microsyst Technol (Springer) 24(2):1025–1031

    Article  Google Scholar 

  • Shoukat Rizwan, Khan MI (2018c) Nanotechnology based electrical control and navigation system for worm guidance using electric field gradient. Microsyst Technol (Springer) 24(2):989–993

    Article  Google Scholar 

  • Strata F (2008) Student assistant, LabView virtual surface for a plasma deposition equipment, University Freiburg, IMTEK-Sensoren

  • Tanaike O, Kitada N, Yoshimura H, Hatori H (2009) Lithium insertion behavior of carbon nanowalls by dc plasma CVD and its heat-treatment effect. Solid State Ionics 180:381

    Article  Google Scholar 

  • Tanaka K, Yoshimura M, Okamoto A, Ueda K (2005) Growth of carbon nanowalls on a SiO2 substrate by microwave plasma-enhanced chemical vapor deposition. Jpn J Appl Phys 44A:2074

    Article  Google Scholar 

  • Wang H, Su Y, Chen S, Quan X (2013) Growth of tungsten oxide on carbon nanowalls templates. Mater Res Bull 48(13):1304–1307

    Article  Google Scholar 

  • Wei S, Kang WP, Davidson JL, Choi BK (2006) Vertically aligned carbon nanotube field emission devices fabricated by furnace thermal chemical vapor deposition at atmospheric pressure. J Vac Sci Technol B Microelectron Nanometer Struct 24:1190

    Article  Google Scholar 

  • Wu Y, Qiao P, Chong T, Shen Z (2002) Carbon nanowalls grown by microwave plasma enhanced chemical vapor deposition. Adv Mater 14:64

    Article  Google Scholar 

  • Wu Y, Yang B, Zong B, Sun H, Shen Z, Feng Y (2004) Carbon nanowalls and related materials. J Mater Chem 14:469

    Article  Google Scholar 

  • Wu S, Peng S, Wang CH (2018) Multifunctional polymer nanocomposites reinforced by aligned carbon nanomaterials. Polymers 10(5):542

    Article  Google Scholar 

  • Zhou M, Luo P, Li A, Wu Y, Khan MI, Lyu J, Li F, Li G (2018) Fabrication of silica membrane through surface‐induced condensation on porous block copolymer. Chem SELECT Commun 3(33):9694–9699

    Google Scholar 

  • Zitt U (2019) Zitt Thoma GmbH. ed. Haslacherstr.6, 79115 Freiburg

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rizwan Shoukat.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shoukat, R., Khan, M.I. Synthesis of nanostructured based carbon nanowalls at low temperature using inductively coupled plasma chemical vapor deposition (ICP-CVD). Microsyst Technol 25, 4439–4444 (2019). https://doi.org/10.1007/s00542-019-04463-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00542-019-04463-7

Navigation