Skip to main content
Log in

Static pull-in instability and free vibration of functionally graded graphene nanoplatelet reinforced micro-sandwich beams under thermo-electrical actuation

  • Technical Paper
  • Published:
Microsystem Technologies Aims and scope Submit manuscript

Abstract

This paper investigates the static pull-in instability and free vibration of a multilayer functionally graded graphene nanoplatelet (GPL) reinforced composite (FG-GPLRC) micro-beam sandwiched between two copper layers subjected to a combined action of an electric voltage and a uniform temperature change based on Euler–Bernoulli beam theory. The GPL nanofillers are uniformly dispersed within each individual layer while its weight fraction changes from layer to layer in the multilayer FG-GPLRC micro-beam. The modified Halpin–Tsai model is used to predict the effective Young’s modulus while the rule of mixture is used to determine the effective Poisson’s ratio, mass density and thermal expansion coefficient. The static pull-in voltage and natural frequency of clamped–clamped micro-beams are obtained by employing Galerkin and iterative method. The effects of GPL distribution pattern, weight fraction, geometry and size as well as the geometry of the beam, the temperature change and the total number of layers on the static and dynamic characteristics of the micro-beams are discussed in detail.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  • Adam H (1997) Carbon fibre in automotive applications. Mater Des 18(4–6):349–355

    Article  Google Scholar 

  • Baradaran S, Moghaddam E, Basirun WJ, Mehrali M, Sookhakian M, Hamdi M, Nakhaei Moghaddam MR, Alias Y (2014) Mechanical properties and biomedical applications of a nanotube hydroxyapatite-reduced graphene oxide composite. Carbon 69:32–45

    Article  Google Scholar 

  • Bartoluccia SF, Paras J, Rafiee MA, Rafiee J, Lee S, Kapoor D, Koratkar N (2011) Graphene–aluminum nanocomposites. Mater Sci Eng A 528:7933–7937

    Article  Google Scholar 

  • Bellucci S, Balasubramanian C, Micciulla F, Rinaldi G (2007) CNT composites for aerospace applications. J Exp Nanosci 2(3):193–206

    Article  Google Scholar 

  • Chen D, Yang J, Kitipornchai S (2017) Nonlinear vibration and postbuckling of functionally graded graphene reinforced porous nanocomposite beams. Compos Sci Technol 142:235–245

    Article  Google Scholar 

  • Chu K, Jia CC, Li WS (2012) Effective thermal conductivity of graphene-based composites. Appl Phys Lett 101:121916

    Article  Google Scholar 

  • Gauvin F, Robert M (2015) Durability study of vinylester/silicate nanocomposites for civil engineering applications. Polym Degrad Stab 121:359–368

    Article  Google Scholar 

  • Ji XY, Cao YP, Feng XQ (2010) Micromechanics prediction of the effective elastic moduli of graphene sheet-reinforced polymer nanocomposites. Modell Simul Mater Sci Eng 18(4):045005

    Article  Google Scholar 

  • Jia XL, Yang J, Kitipornchai S (2010) Characterization of FGM micro-switches under electrostatic and Casimir forces. IOP Conf Ser Mater Sci Eng 10:012178

    Article  Google Scholar 

  • Jia XL, Yang J, Kitipornchai S, Lim CW (2012) Pull-in instability and free vibration of electrically actuated poly-SiGe graded micro-beams with a curved ground electrode. Appl Math Model 36:1875–1884

    Article  MathSciNet  MATH  Google Scholar 

  • Jia XL, Zhang SM, Ke LL, Yang J, Kitipornchai S (2014) Thermal effect on the pull-in instability of functionally graded micro-beams subjected to electrical actuation. Compos Struct 116:136–146

    Article  Google Scholar 

  • Jia XL, Ke LL, Feng CB, Yang J, Kitipornchai S (2015) Size effect on the free vibration of geometrically nonlinear functionally graded micro-beams under electrical actuation and temperature change. Compos Struct 133:1137–1148

    Article  Google Scholar 

  • Kaneria AJ, Sharma DS, Trivedi RR (2013) Static analysis of electrostatically actuated micro cantilever beam. Procedia Eng 51:776–780

    Article  Google Scholar 

  • King JA, Klimek DR, Miskioglu I, Odegard GM (2013) Mechanical properties of graphene nanoplatelet/epoxy composites. J Appl Polym Sci 128(6):4217–4223

    Article  Google Scholar 

  • Krylov S, Maimon R (2004) Pull-in dynamics of an elastic beam actuated by continuously distributed electrostatic force. J Vib Acoust 126:332–342

    Article  Google Scholar 

  • Li Y, Zhang H, Porwal H, Huang ZH, Bilotti E, Peijs T (2017) Mechanical, electrical and thermal properties of in situ exfoliated graphene/epoxy nanocomposites. Compos Part A 95:229–236

    Article  Google Scholar 

  • Mestrom RMC, Fey RHB, Phan KL, Nijmeijer H (2010) Simulations and experiments of hardening and softening resonances in a clamped–clamped beam MEMS resonator. Sens Actuators A 162:225–234

    Article  Google Scholar 

  • Montazeri A, Rafii-Tabar H (2011) Multiscale modeling of graphene- and nanotube-based reinforced polymer nanocomposites. Phys Lett A 375(45):4034–4040

    Article  Google Scholar 

  • Peng JS, Yang L, Luo GB, Yang J (2014a) Nonlinear electro-dynamic analysis of micro-actuators: effect of material nonlinearity. Appl Math Model 38:2781–2790

    Article  MathSciNet  MATH  Google Scholar 

  • Peng JS, Yang L, Yang J (2014b) Dynamic pull-in instability of a micro-actuator made from nonlinear elasticity materials. Smart Mater Struct 23:065023

    Article  Google Scholar 

  • Peng JS, Yang L, Yang J (2017a) Size effect on the dynamic analysis of electrostatically actuated micro-actuators. Microsyst Technol 23:1247–1254

    Article  Google Scholar 

  • Peng JS, Yang L, Lin F, Yang J (2017b) Dynamic analysis of size-dependent microbeams with nonlinear elasticity under electrical actuation. Appl Math Model 43:441–453

    Article  MathSciNet  Google Scholar 

  • Rafiee MA, Rafiee J, Wang Z, Song H, Yu ZZ, Koratkar N (2009) Enhanced mechanical properties of nanocomposites at low graphene content. ACS Nano 3(12):3884–3890

    Article  Google Scholar 

  • Shen HS, Lin F, Xiang Y (2017) Nonlinear bending and thermal postbuckling of functionally graded graphene-reinforced composite laminated beams resting on elastic foundations. Eng Struct 140:89–97

    Article  Google Scholar 

  • Song M, Kitipornchai S, Yang J (2017) Free and forced vibrations of functionally graded polymer composite plates reinforced with graphene nanoplatelets. Compos Struct 159:579–588

    Article  Google Scholar 

  • Wang S, Tambraparni M, Qiu JJ, Tipton J, Dean D (2009) Thermal expansion of graphene composites. Macromolecules 42:5251–5255

    Article  Google Scholar 

  • Wang Y, Yu J, Dai W, Song Y, Wang D, Zeng L, Jiang N (2015a) Enhanced thermal and electrical properties of epoxy composites reinforced with graphene nanoplatelets. Polym Compos 36(3):556–565

    Article  Google Scholar 

  • Wang F, Drzal LT, Qin Y, Huang Z (2015b) Mechanical properties and thermal conductivity of graphene nanoplatelet/epoxy composites. J Mater Sci 50(3):1082–1093

    Article  Google Scholar 

  • Wu H, Drzal LT (2014) Effect of graphene nanoplatelets on coefficient of thermal expansion of polyetherimide composite. Mater Chem Phys 146:26–36

    Article  Google Scholar 

  • Wu HL, Yang J, Kitipornchai S (2017) Dynamic instability of functionally graded multilayer graphene nano-composite beams in thermal environment. Compos Struct 162:244–254

    Article  Google Scholar 

  • Yang B, Yang J, Kitipornchai S (2016) Thermoelastic analysis of functionally graded graphene reinforced rectangular plates based on 3D elasticity. Meccanica 52(10):1–18

    MathSciNet  MATH  Google Scholar 

  • Yang J, Wu HL, Kitipornchai S (2017a) Buckling and postbuckling of functionally graded multilayer graphene platelet-reinforced composite beams. Compos Struct 161:111–118

    Article  Google Scholar 

  • Yang L, Fang F, Peng JS, Yang J (2017b) Dynamic pull-in instability of a thermoelectromechanically loaded micro-beam based on “symmetric stress” gradient elasticity theory. Int J Struct Stab Dyn 17(10):1750117

    Article  MathSciNet  Google Scholar 

  • Younis MI, Abdel-Rahman EM, Nayfeh AH (2003) A reduced-order model for electrically actuated microbeam-based MEMS. J Microelectromech Syst 12:672–680

    Article  Google Scholar 

  • Yu L, Park JS, Lim YS, Lee CS, Shin K, Moon HJ, Yang CM, Lee YS, Han JH (2013) Carbon hybrid fillers composed of carbon nanotubes directly grown on graphene nanoplatelets for effective thermal conductivity in epoxy composites. Nanotechnology 24:155604

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by a research grant from the Science Foundation, the Education Department of Sichuan Province, China [Project No. 16ZB0433]. The authors are grateful for this financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jianshe Peng.

Ethics declarations

Conflict of interest

The authors declare that they have no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This work has not been published previously and it is not under consideration for publication elsewhere. If accepted, it will not be published elsewhere in the same form, in English or in any other language, including electronically without the written consent of the copyright-holder.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, L., Peng, J., Fang, F. et al. Static pull-in instability and free vibration of functionally graded graphene nanoplatelet reinforced micro-sandwich beams under thermo-electrical actuation. Microsyst Technol 25, 3599–3608 (2019). https://doi.org/10.1007/s00542-019-04359-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00542-019-04359-6

Navigation