Skip to main content
Log in

Vibration and frequency analysis of edge-cracked functionally graded graphene reinforced composite beam with piezoelectric actuators

  • Original Article
  • Published:
Engineering with Computers Aims and scope Submit manuscript

Abstract

This paper investigates vibrations of the edge-cracked functionally graded graphene reinforced composite (FG-GRC) beam with the piezoelectric actuators. The edge crack is simulated by a rotational massless spring model. The effective Young modulus of the FG-GRC beam is estimated by utilizing the modified Halpin–Tsai model. The rule of mixture is applied to calculate the mass density and Poisson ratio of the FG-GRC beam. The total energy function of the edge-cracked FG-GRC piezoelectric beam is derived through using Timoshenko beam theory and von Kármán nonlinear strain–displacement relationship. The mechanical–electrical governing equations of motion for the edge-cracked FG-GRC piezoelectric beam are obtained by applying the standard Ritz procedure and are solved by the direct iterative method. The effectiveness and accuracy of this approach are verified through comparing the present results with other research results. Both uniformly and functionally graded (FG) distributed graphene nanoplatelets (GPLs) are considered to analyze influences of the GPL weight fraction, crack depth, crack location, boundary condition, thickness of the piezoelectric layer, and applied actuator voltage on the mechanical–electrical linear and nonlinear vibrations of the edge-cracked FG-GRC beam. The numerical results can help us predict the mechanical–electrical dynamic behaviors of the FG-GRC beam with cracks and promote the development of the structural health monitoring.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Novoselov KS, Geim AK, Morozov SV, Jiang D, Zhang Y, Dubonos SV, Grigorieva IV, Firsov AA (2004) Electric field effect in atomically thin carbon films. Science 306:666–669

    Google Scholar 

  2. Zaman I, Phan TT, Kuan HC, Meng Q, La LTB, Luong L, Youssf O, Ma J (2011) Epoxy/graphene platelets nanocomposites with two levels of interface strength. Polymer 52:1603–1611

    Google Scholar 

  3. Chen JH, Jang C, Xiao S, Ishigami M, Fuhrer MS (2008) Intrinsic and extrinsic performance limits of graphene devices on SiO2. Nat Nanotechnol 3:206–209

    Google Scholar 

  4. Nieto A, Bisht A, Lahiri D, Zhang C, Agarwal A (2017) Graphene reinforced metal and ceramic matrix composites: a review. Int Mater Rev 62:241–302

    Google Scholar 

  5. Zhao S, Zhao Z, Yang Z, Ke L, Kitipornchai S, Yang J (2020) Functionally graded graphene reinforced composite structures: a review. Eng Struct 210:110339

    Google Scholar 

  6. Rafiee MA, Rafiee J, Wang Z, Song H, Yu ZZ, Koratkar N (2009) Enhanced mechanical properties of nanocomposites at low graphene content. ACS Nano 3:3884–3890

    Google Scholar 

  7. Guo XY, Jiang P, Zhang W, Yang J, Kitipornchai S, Sun L (2018) Nonlinear dynamic analysis of composite piezoelectric plates with graphene skin. Compos Struct 206:839–852

    Google Scholar 

  8. Guo LJ, Mao JJ, Zhang W (2021) Buckling analyses of edge-cracked functionally graded graphene reinforced composite piezoelectric beam. J Phys Conf Ser 1906:012042

    Google Scholar 

  9. Suresh S, Mortensen A (1998) Fundamentals of functionally graded materials. IOM Communications Ltd, London

  10. Ke LL, Wang YS (2006) Two-dimensional contact mechanics of functionally graded materials with arbitrary spatial variations of material properties. Int J Solids Struct 43:5779–5798

    MATH  Google Scholar 

  11. Hao YX, Chen LH, Zhang W, Lei JG (2008) Nonlinear oscillations, bifurcations and chaos of functionally graded materials plate. J Sound Vib 312:862–892

    Google Scholar 

  12. Vel SS, Batra RC (2004) Three-dimensional exact solution for the vibration of functionally graded rectangular plates. J Sound Vib 272:703–730

    Google Scholar 

  13. Efraim E, Eisenberger M (2007) Exact vibration analysis of variable thickness thick annular isotropic and FGM plates. J Sound Vib 299:720–738

    Google Scholar 

  14. Zhang W, Yang J, Hao YX (2010) Chaotic vibrations of an orthotropic FGM rectangular plate based on third-order shear deformation theory. Nonlinear Dyn 59:619–660

    MATH  Google Scholar 

  15. Mao JJ, Ke LL, Wang YS, Liu J (2016) Frictionally excited thermoelastic instability of functionally graded materials sliding out-of-plane with contact resistance. J Appl Mech Trans ASME 83:021010

    Google Scholar 

  16. Cao DX, Gao YH, Yao MH, Zhang W (2018) Free vibration of axially functionally graded beams using the asymptotic development method. Eng Struct 173:442–448

    Google Scholar 

  17. Abo-Bakr RM, Eltaher MA, Atti MA (2020) Pull-in and freestanding instability of actuated functionally graded nanobeams including surface and stiffening effects. Eng Comput. https://doi.org/10.1007/s00366-020-01146-0

  18. Esen I, Abdelrhmaan AA, Eltaher MA (2021) Free vibration and buckling stability of FG nanobeams exposed to magnetic and thermal fields. Eng Comput. https://doi.org/10.1007/s00366-021-01389-5

  19. Hamed MA, Abo-Bakr RM, Mohamed SA, Eltaher MA (2020) Influence of axial load function and optimization on static stability of sandwich functionally graded beams with porous core. Eng Comput 36:1929–1946

    Google Scholar 

  20. Daikh AA, Houari MSA, Belarbi MO, Chakraverty S, Eltaher MA (2021) Analysis of axially temperature-dependent functionally graded carbon nanotube reinforced composite plates. Eng Comput. https://doi.org/10.1007/s00366-021-01413-8

  21. Feng C, Kitipornchai S, Yang J (2017) Nonlinear free vibration of functionally graded polymer composite beams reinforced with graphene nanoplatelets (GPLs). Eng Struct 140:110–119

    Google Scholar 

  22. Song MT, Kitipornchai S, Yang J (2017) Free and forced vibrations of functionally graded polymer composite plates reinforced with graphene nanoplatelets. Compos Struct 159:579–588

    Google Scholar 

  23. Shen HS, Xiang Y, Fan Y (2019) Nonlinear vibration of thermally postbuckled FG-GRC laminated beams resting on elastic foundations. Int J Struct Stab Dyn. https://doi.org/10.1142/S0219455419500512

  24. Shen HS, Xian Y, Fan Y, Hui D (2018) Nonlinear vibration of functionally graded graphene-reinforced composite laminated cylindrical panels resting on elastic foundations in thermal environments. Compos Part B Eng 136:177–186

    Google Scholar 

  25. Mao JJ, Zhang W (2019) Buckling and post-buckling analyses of functionally graded graphene reinforced piezoelectric plate subjected to electric potential and axial forces. Compos Struct 216:392–405

    Google Scholar 

  26. Mao JJ, Zhang W (2018) Linear and nonlinear free and forced vibrations of graphene reinforced piezoelectric composite plate under external voltage excitation. Compos Struct 203:551–565

    Google Scholar 

  27. Wang YW, Xie K, Fu T, Zhang W (2021) A third order shear deformable model and its applications for nonlinear dynamic response of graphene oxides reinforced curved beams resting on visco-elastic foundation and subjected to moving loads. Eng Comput. https://doi.org/10.1007/s00366-020-01238-x

  28. Wang AW, Chen HY, Hao YX, Zhang W (2018) Vibration and bending behavior of functionally graded nanocomposite doubly-curved shallow shells reinforced by graphene nanoplatelets. Results Phys 9:550–559

    Google Scholar 

  29. Mohamed N, Mohamed SA, Eltaher MA (2021) Buckling and post-buckling behaviors of higher order carbon nanotubes using energy-equivalent model. Eng Comput 37:2823–2836

    Google Scholar 

  30. Esen I, Abdelrahman AA, Eltaher MA (2020) Dynamics analysis of Timoshenko perforated microbeams under moving loads. Eng Comput. https://doi.org/10.1007/s00366-020-01212-7

  31. Mao JJ, Lu HM, Zhang W, Lai SK (2020) Vibrations of graphene nanoplatelet reinforced functionally gradient piezoelectric composite microplate based on nonlocal theory. Compos Struct 236:111813

    Google Scholar 

  32. Yang XD, Wang SW, Zhang W, Yang TZ, Lim CW (2018) Model formulation and modal analysis of a rotating elastic uniform Timoshenko beam with setting angle. Eur J Mech A Solids 72:209–222

    MathSciNet  MATH  Google Scholar 

  33. Wu HL, Yang J, Kitipornchai S (2016) Nonlinear vibration of functionally graded carbon nanotube-reinforced composite beams with geometric imperfections. Compos Part B Eng 90:86–96

    Google Scholar 

  34. Rafiee M, He XQ, Liew KM (2014) Non-linear dynamic stability of piezoelectric functionally graded carbon nanotube-reinforced composite plates with initial geometric imperfection. Int J Nonlinear Mech 59:37–51

    Google Scholar 

  35. Dimarogonas AD (1996) Vibration of cracked structures: a state of the art review. Eng Fract Mech 55:831–857

    Google Scholar 

  36. Shifrin E, Ruotolo R (1999) Natural frequencies of a beam with an arbitrary number of cracks. J Sound Vib 222:409–423

    Google Scholar 

  37. Gayen D, Tiwari R, Chakraborty D (2019) Static and dynamic analyses of cracked functionally graded structural components: a review. Compos Part B Eng 173:106982

    Google Scholar 

  38. Song MT, Gong YH, Yang J, Zhu WD, Kitipornchai S (2019) Free vibration and buckling analyses of edge-cracked functionally graded multilayer graphene nanoplatelet-reinforced composite beams resting on an elastic foundation. J Sound Vib 458:89–108

    Google Scholar 

  39. Broek D (2012) Elementary engineering fracture mechanics. Springer Science & Business Media, Berlin

    MATH  Google Scholar 

  40. Erdogan F, Wu BH (1997) The surface crack problem for a plate with functionally graded properties. ASME J Appl Mech 64(3):449–456

    MATH  Google Scholar 

  41. Guo LC, Wu LZ, Zeng T (2005) The dynamic response of an edge crack in a functionally graded orthotropic strip. Mech Res Commun 32:385–400

    MATH  Google Scholar 

  42. Song MT, Chen L, Yang J, Zhu WD, Kitipornchai S (2019) Thermal buckling and postbuckling of edge-cracked functionally graded multilayer graphene nanocomposite beams on an elastic foundation. Int J Mech Sci 161:105040

    Google Scholar 

  43. Zhu LF, Ke LL, Xiang Y, Zhu XQ (2020) Free vibration and damage identification of cracked functionally graded plates. Compos Struct 250:112517

    Google Scholar 

  44. Yang J, Chen Y (2008) Free vibration and buckling analyses of functionally graded beams with edge cracks. Compos Struct 83:48–60

    Google Scholar 

  45. Kitipornchai S, Ke LL, Yang J, Xiang Y (2009) Nonlinear vibration of edge cracked functionally graded Timoshenko beams. J Sound Vib 324:962–982

    Google Scholar 

  46. Ke LL, Wang Y, Yang J, Kitipornchai S, Alam F (2012) Nonlinear vibration of edged cracked FGM beams using differential quadrature method. Sci China Phys Mech Astron 55:2114–2121

    Google Scholar 

  47. Ke LL, Yang J, Kitipornchai S (2009) Postbuckling analysis of edge cracked functionally graded Timoshenko beams under end shortening. Compos Struct 90:152–160

    Google Scholar 

  48. Zhu LF, Ke LL, Xiang Y, Zhu XQ, Wang YS (2020) Vibrational power flow analysis of cracked functionally graded beams. Thin Walled Struct 150:106626

    Google Scholar 

  49. Sinha GP, Kumar B (2020) Review on vibration analysis of functionally graded material structural components with cracks. J Vib Eng Technol 9:23–49

    Google Scholar 

  50. Suresh S, Mortensen A (1997) Functionally graded metals and metal-ceramic composites: part 2 thermomechanical behaviour. Int Mater Rev 42:85–116

    Google Scholar 

  51. Song MT, Gong YH, Yang J, Zhu WD, Kitipornchai S (2020) Nonlinear free vibration of cracked functionally graded graphene platelet-reinforced nanocomposite beams in thermal environments. J Sound Vib 468:115115

    Google Scholar 

  52. Rafiee M, Yang J, Kitipornchai S (2013) Large amplitude vibration of carbon nanotube reinforced functionally graded composite beams with piezoelectric layers. Compos Struct 96:716–725

    Google Scholar 

  53. Zhang YH, Niu HP, Xie SL, Zhang XN (2008) Numerical and experimental investigation of active vibration control in a cylindrical shell partially covered by a laminated PVDF actuator. Smart Mater Struct 17:035024

    Google Scholar 

  54. Selim BA, Zhang LW, Liew KM (2016) Active vibration control of FGM plates with piezoelectric layers based on Reddy’s higher-order shear deformation theory. Compos Struct 155:118–134

    Google Scholar 

  55. Selim BA, Zhang LW, Liew KM (2017) Active vibration control of CNT-reinforced composite plates with piezoelectric layers based on Reddy’s higher-order shear deformation theory. Compos Struct 163:350–364

    Google Scholar 

  56. Selim BAMM, Liu Z, Liew KM (2020) Active control of functionally graded carbon nanotube-reinforced composite plates with piezoelectric layers subjected to impact loading. J Vib Control 26:581–598

    MathSciNet  Google Scholar 

  57. AkhavanAlavi S, Mohammadimehr M, Edjtahed S (2019) Active control of micro Reddy beam integrated with functionally graded nanocomposite sensor and actuator based on linear quadratic regulator method. Eur J Mech A Solids 74:449–461

    MathSciNet  MATH  Google Scholar 

  58. Shokrieh MM, Ghoreishi SM, Esmkhani M (2015) Toughening mechanisms of nano particle-reinforced polymers. In: Toughening mechanisms in composite materials, pp 295–320

  59. Liew KM, Yang J, Kitipornchai S (2003) Postbuckling of piezoelectric FGM plates subject to thermo-electro-mechanical loading. Int J Solids Struct 40:3869–3892

    MATH  Google Scholar 

  60. Wang Q (2002) On buckling of column structures with a pair of piezoelectric layers. Eng Struct 24:199–205

    Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge the support of National Natural Science Foundation of China (NNSFC) through Grant Nos. 11802005, 11832002, 12172012 and 11427801, the Funding Project for Academic Human Resources Development in Institutions of Higher Learning under the Jurisdiction of Beijing Municipality (PHRIHLB), and the General Program of Science and Technology Development Project of Beijing Municipal Education Commission (KM201910005035).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to W. Zhang.

Ethics declarations

Conflict of interest

The authors declare that there is no conflict of interests regarding the publication of this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendices

Appendix A

The trail functions in Eqs. (48)–(52) are expressed in the following forms:

$$ \begin{gathered} U_{a} \left( X \right) = \sum\limits_{j = 1}^{n} {A_{j} } H_{1j} ,\;W_{a} \left( X \right) = \sum\limits_{j = 1}^{n} {B_{j} } H_{1j} , \hfill \\ U_{b} \left( X \right) = \sum\limits_{j = 1}^{n} {\tilde{A}_{j} } H_{2j} ,\;W_{b} \left( X \right) = \sum\limits_{j = 1}^{n} {\tilde{B}_{j} } H_{2j} , \hfill \\ U_{2} \left( X \right) = \sum\limits_{j = 1}^{n} {\tilde{A}_{j} } H_{3j} ,\;W_{2} \left( X \right) = \sum\limits_{j = 1}^{n} {\tilde{B}_{j} } H_{3j} , \hfill \\ \psi_{a} \left( X \right) = \sum\limits_{j = 1}^{n} {C_{j} } H_{4j} ,\;\psi_{b} \left( X \right) = \sum\limits_{j = 1}^{n} {\tilde{C}_{j} } H_{5j} ,\;{\text{and}} \hfill \\ \psi_{c} \left( X \right) = \sum\limits_{j = 1}^{n} {\tilde{A}_{j} } H_{6j} ,\;\psi_{2} \left( X \right) = \sum\limits_{j = 1}^{n} {\tilde{C}_{j} } H_{7j} . \hfill \\ \end{gathered} $$
(55)

Appendix B

The elements of symmetric linear stiffness matrix \({\mathbf{K}}_{{\mathbf{L}}}\) in Eq. (54) are

$$ \begin{gathered} {\mathbf{K}}_{{{\mathbf{L}}\left( {j,m} \right)}} = \int_{0}^{{X_{0} }} {\left( {a_{{11}} \frac{{\partial H_{{1j}} }}{{\partial X}}\frac{{\partial H_{{1m}} }}{{\partial X}}} \right)} dX,\;{\mathbf{K}}_{{{\mathbf{L}}\left( {j,n + m} \right)}} = \int_{0}^{{X_{0} }} {\left( {a_{{11}} \frac{{\partial H_{{1j}} }}{{\partial X}}\frac{{\partial H_{{2m}} }}{{\partial X}} + b_{{11}} \frac{{\partial H_{{1j}} }}{{\partial X}}\frac{{\partial H_{{6m}} }}{{\partial X}}} \right)} dX, \hfill \\ {\mathbf{K}}_{{{\mathbf{L}}\left( {j,2n + m} \right)}} = {\mathbf{K}}_{{{\mathbf{L}}\left( {j,3n + m} \right)}} = 0,\;{\mathbf{K}}_{{{\mathbf{L}}\left( {j,4n + m} \right)}} = \int_{0}^{{X_{0} }} {\left( {b_{{11}} \frac{{\partial H_{{1j}} }}{{\partial X}}\frac{{\partial H_{{4m}} }}{{\partial X}}} \right)} dX, \hfill \\ {\mathbf{K}}_{{{\mathbf{L}}\left( {j,5n + m} \right)}} = \int_{0}^{{X_{0} }} {\left( {b_{{11}} \frac{{\partial H_{{1j}} }}{{\partial X}}\frac{{\partial H_{{5m}} }}{{\partial X}}} \right)} dX, \hfill \\ {\mathbf{K}}_{{{\mathbf{L}}\left( {n + j,n + m} \right)}} = \int_{0}^{{X_{0} }} {\left[ {a_{{11}} \frac{{\partial H_{{2j}} }}{{\partial X}}\frac{{\partial H_{{2m}} }}{{\partial X}} + b_{{11}} \left( {\frac{{\partial H_{{2j}} }}{{\partial X}}\frac{{\partial H_{{6m}} }}{{\partial X}} + \frac{{\partial H_{{2m}} }}{{\partial X}}\frac{{\partial H_{{6j}} }}{{\partial X}}} \right)} \right.} + d_{{11}} \frac{{\partial H_{{6j}} }}{{\partial X}}\frac{{\partial H_{{6m}} }}{{\partial X}} \hfill \\ \left. { + a_{{55}} \eta ^{2} H_{{6j}} H_{{6m}} } \right]dX + \int_{{X_{0} }}^{1} {\left( {a_{{11}} \frac{{\partial H_{{3j}} }}{{\partial X}}\frac{{\partial H_{{3m}} }}{{\partial X}}} \right)dX + K_{T}^{ * } \left( {H_{{6j}} H_{{6m}} } \right)_{{X = X_{0} }} } , \hfill \\ {\mathbf{K}}_{{{\mathbf{L}}\left( {n + j,2n + m} \right)}} = \int_{0}^{{X_{0} }} {\left( {a_{{55}} \eta H_{{6j}} \frac{{\partial H_{{1m}} }}{{\partial X}}} \right)} dX,\;{\mathbf{K}}_{{{\mathbf{L}}\left( {n + j,3n + m} \right)}} = \int_{0}^{{X_{0} }} {\left( {a_{{55}} \eta H_{{6j}} \frac{{\partial H_{{2m}} }}{{\partial X}}} \right)} dX, \hfill \\ {\mathbf{K}}_{{{\mathbf{L}}\left( {n + j,4n + m} \right)}} = \int_{0}^{{X_{0} }} {\left( {b_{{11}} \frac{{\partial H_{{2j}} }}{{\partial X}}\frac{{\partial H_{{4m}} }}{{\partial X}} + d_{{11}} \frac{{\partial H_{{6j}} }}{{\partial X}}\frac{{\partial H_{{4m}} }}{{\partial X}} + a_{{55}} \eta ^{2} H_{{6j}} H_{{4m}} } \right)\;} dX + K_{T}^{ * } \left( {H_{{6j}} H_{{4m}} } \right)_{{X = X_{0} }} , \hfill \\ {\mathbf{K}}_{{{\mathbf{L}}\left( {n + j,5n + m} \right)}} = \int_{0}^{{X_{0} }} {\left( {b_{{11}} \frac{{\partial H_{{2j}} }}{{\partial X}}\frac{{\partial H_{{5m}} }}{{\partial X}} + d_{{11}} \frac{{\partial H_{{6j}} }}{{\partial X}}\frac{{\partial H_{{5m}} }}{{\partial X}} + a_{{55}} \eta ^{2} H_{{6j}} H_{{5m}} } \right)\;} dX \hfill \\ + \int_{{X_{0} }}^{1} {\left( {b_{{11}} \frac{{\partial H_{{3j}} }}{{\partial X}}\frac{{\partial H_{{7m}} }}{{\partial X}}} \right)dX + K_{T}^{ * } \left( {H_{{6j}} H_{{5m}} - H_{{6j}} H_{{7m}} } \right)_{{X = X_{0} }} } , \hfill \\ {\mathbf{K}}_{{{\mathbf{L}}\left( {2n + j,2n + m} \right)}} = \int_{0}^{{X_{0} }} {\left( {a_{{55}} \frac{{\partial H_{{1j}} }}{{\partial X}}\frac{{\partial H_{{1m}} }}{{\partial X}} - \frac{1}{2}\tilde{N}^{P} \frac{{\partial H_{{1j}} }}{{\partial X}}\frac{{\partial H_{{1m}} }}{{\partial X}}} \right)} dX, \hfill \\ {\mathbf{K}}_{{{\mathbf{L}}\left( {2n + j,3n + m} \right)}} = \int_{0}^{{X_{0} }} {\left( {a_{{55}} \frac{{\partial H_{{1j}} }}{{\partial X}}\frac{{\partial H_{{2m}} }}{{\partial X}} - \frac{1}{2}\tilde{N}^{P} \frac{{\partial H_{{1j}} }}{{\partial X}}\frac{{\partial H_{{2m}} }}{{\partial X}}} \right)} dX, \hfill \\ {\mathbf{K}}_{{{\mathbf{L}}\left( {2n + j,4n + m} \right)}} = \int_{0}^{{X_{0} }} {\left( {a_{{55}} \eta \frac{{\partial H_{{1j}} }}{{\partial X}}H_{{4m}} } \right)} dX,\;{\mathbf{K}}_{{{\mathbf{L}}\left( {2n + j,5n + m} \right)}} = \int_{0}^{{X_{0} }} {\left( {a_{{55}} \eta \frac{{\partial H_{{1j}} }}{{\partial X}}H_{{5m}} } \right)} dX, \hfill \\ {\mathbf{K}}_{{{\mathbf{L}}\left( {3n + j,3n + m} \right)}} = \int_{0}^{{X_{0} }} {\left( {a_{{55}} \frac{{\partial H_{{2j}} }}{{\partial X}}\frac{{\partial H_{{2m}} }}{{\partial X}} - \frac{1}{2}\tilde{N}^{P} \frac{{\partial H_{{2j}} }}{{\partial X}}\frac{{\partial H_{{2m}} }}{{\partial X}}} \right)} dX \hfill \\ + \int_{{X_{0} }}^{1} {\left( {a_{{55}} \frac{{\partial H_{{3j}} }}{{\partial X}}\frac{{\partial H_{{3m}} }}{{\partial X}} - \frac{1}{2}\tilde{N}^{P} \frac{{\partial H_{{3j}} }}{{\partial X}}\frac{{\partial H_{{3m}} }}{{\partial X}}} \right)} dX, \hfill \\ {\mathbf{K}}_{{{\mathbf{L}}\left( {3n + j,4n + m} \right)}} = \int_{0}^{{X_{0} }} {\left( {a_{{55}} \frac{{\partial H_{{2j}} }}{{\partial X}}H_{{4m}} } \right)} dX, \hfill \\ {\mathbf{K}}_{{{\mathbf{L}}\left( {3n + j,5n + m} \right)}} = \int_{0}^{{X_{0} }} {\left( {a_{{55}} \frac{{\partial H_{{2j}} }}{{\partial X}}H_{{5m}} + a_{{55}} \frac{{\partial H_{{3j}} }}{{\partial X}}H_{{7m}} } \right)} dX, \hfill \\ {\mathbf{K}}_{{{\mathbf{L}}\left( {4n + j,4n + m} \right)}} = \int_{0}^{{X_{0} }} {\left( {d_{{11}} \frac{{\partial H_{{4j}} }}{{\partial X}}\frac{{\partial H_{{4m}} }}{{\partial X}} + a_{{55}} \eta ^{2} H_{{4j}} H_{{4m}} } \right)} dX + K_{T}^{ * } \left( {H_{{4j}} H_{{4m}} } \right)_{{X = X_{0} }} , \hfill \\ {\mathbf{K}}_{{{\mathbf{L}}\left( {4n + j,5n + m} \right)}} = \int_{0}^{{X_{0} }} {\left( {d_{{11}} \frac{{\partial H_{{4j}} }}{{\partial X}}\frac{{\partial H_{{5m}} }}{{\partial X}} + a_{{55}} \eta ^{2} H_{{4j}} H_{{5m}} } \right)} dX + K_{T}^{ * } \left( {H_{{4j}} H_{{5m}} - H_{{4j}} H_{{7m}} } \right)_{{X = X_{0} }} ,\;{\text{and}} \hfill \\ {\mathbf{K}}_{{{\mathbf{L}}\left( {5n + j,5n + m} \right)}} = \int_{0}^{{X_{0} }} {\left( {d_{{11}} \frac{{\partial H_{{5j}} }}{{\partial X}}\frac{{\partial H_{{5m}} }}{{\partial X}} + a_{{55}} \eta ^{2} H_{{5j}} H_{{5m}} } \right)} dX + \int_{{X_{0} }}^{1} {\left( {d_{{11}} \frac{{\partial H_{{7j}} }}{{\partial X}}\frac{{\partial H_{{7m}} }}{{\partial X}} + a_{{55}} \eta ^{2} H_{{7j}} H_{{7m}} } \right)} dX \hfill \\ + K_{T}^{ * } \left( {H_{{7j}} H_{{7m}} + H_{{5j}} H_{{5m}} - H_{{5j}} H_{{7m}} - H_{{7j}} H_{{5m}} } \right)_{{X = X_{0} }} . \hfill \\ \end{gathered} $$
(56)

The elements of the symmetric mass matrix \({\mathbf{M}}\) in Eq. (54) are

$$ \begin{gathered} {\mathbf{M}}_{{\left( {j,m} \right)}} = \int_{0}^{{X_{0} }} {\tilde{I}_{1} H_{1j} H_{1m} } dX,\;{\mathbf{M}}_{{\left( {j,n + m} \right)}} = \int_{0}^{{X_{0} }} {\left( {\tilde{I}_{1} H_{1j} H_{2m} + \tilde{I}_{2} H_{1j} H_{6m} } \right)} dX, \hfill \\ {\mathbf{M}}_{{\left( {j,2n + m} \right)}} = {\mathbf{M}}_{{\left( {j,3n + m} \right)}} = 0,\;{\mathbf{M}}_{{\left( {j,4n + m} \right)}} = \int_{0}^{{X_{0} }} {\tilde{I}_{2} H_{1j} H_{4m} } dX,\;{\mathbf{M}}_{{\left( {j,5n + m} \right)}} = \int_{0}^{{X_{0} }} {\tilde{I}_{2} H_{1j} H_{5m} } dX, \hfill \\ {\mathbf{M}}_{{\left( {n + j,n + m} \right)}} = \int_{0}^{{X_{0} }} {\left( {\tilde{I}_{1} H_{2j} H_{2m} + \tilde{I}_{2} H_{2j} H_{6m} + \tilde{I}_{2} H_{2m} H_{6j} + \tilde{I}_{3} H_{6j} H_{6m} } \right)} dX + \int_{{X_{0} }}^{1} {\tilde{I}_{1} H_{3j} H_{3m} } dX, \hfill \\ {\mathbf{M}}_{{\left( {n + j,2n + m} \right)}} = {\mathbf{M}}_{{\left( {n + j,3n + m} \right)}} = 0,\;{\mathbf{M}}_{{\left( {n + j,4n + m} \right)}} = \int_{0}^{{X_{0} }} {\left( {\tilde{I}_{2} H_{2j} H_{4m} + \tilde{I}_{3} H_{6j} H_{4m} } \right)} dX, \hfill \\ {\mathbf{M}}_{{\left( {n + j,5n + m} \right)}} = \int_{0}^{{X_{0} }} {\left( {\tilde{I}_{2} H_{2j} H_{5m} + \tilde{I}_{3} H_{6j} H_{5m} } \right)} dX + \int_{{X_{0} }}^{1} {\tilde{I}_{2} H_{3j} H_{7m} } dX, \hfill \\ {\mathbf{M}}_{{\left( {2n + j,2n + m} \right)}} = \int_{0}^{{X_{0} }} {\tilde{I}_{1} H_{1j} H_{1m} } dX,\;{\mathbf{M}}_{{\left( {2n + j,3n + m} \right)}} = \int_{0}^{{X_{0} }} {\tilde{I}_{1} H_{1j} H_{2m} } dX, \hfill \\ {\mathbf{M}}_{{\left( {2n + j,4n + m} \right)}} = {\mathbf{M}}_{{\left( {2n + j,5n + m} \right)}} = 0,\;{\mathbf{M}}_{{\left( {3n + j,3n + m} \right)}} = \int_{0}^{{X_{0} }} {\tilde{I}_{1} H_{2j} H_{2m} } dX + \int_{{X_{0} }}^{1} {\tilde{I}_{1} H_{3j} H_{3m} } dX, \hfill \\ {\mathbf{M}}_{{\left( {3n + j,4n + m} \right)}} = {\mathbf{M}}_{{\left( {3n + j,5n + m} \right)}} = 0,\;{\mathbf{M}}_{{\left( {4n + j,4n + m} \right)}} = \int_{0}^{{X_{0} }} {\tilde{I}_{3} H_{4j} H_{4m} } dX,\;{\text{and}} \hfill \\ {\mathbf{M}}_{{\left( {4n + j,5n + m} \right)}} = \int_{0}^{{X_{0} }} {\tilde{I}_{3} H_{4j} H_{5m} } dX,\;{\mathbf{M}}_{{\left( {5n + j,5n + m} \right)}} = \int_{0}^{{X_{0} }} {\tilde{I}_{3} H_{5j} H_{5m} } dX + \int_{{X_{0} }}^{1} {\tilde{I}_{3} H_{7j} H_{7m} } dX. \hfill \\ \end{gathered} $$
(57)

The elements of the nonlinear stiffness matrices matrix \({\mathbf{K}}_{{{\mathbf{NL}}1}}\) and \({\mathbf{K}}_{{{\mathbf{NL}}2}}\) in Eq. (54) are given as

$$ \begin{gathered} {\mathbf{K}}_{{{\mathbf{NL}}1\left( {j,m} \right)}} = {\mathbf{K}}_{{{\mathbf{NL}}1\left( {j,n + m} \right)}} = 0,\;{\mathbf{K}}_{{{\mathbf{NL}}1\left( {j,2n + m} \right)}} = \int_{0}^{{X_{0} }} {\left( {\frac{{a_{{11}} }}{\eta }\frac{{\partial W_{1} }}{{\partial X}}\frac{{\partial H_{{1j}} }}{{\partial X}}\frac{{\partial H_{{1m}} }}{{\partial X}}} \right)} dX, \hfill \\ {\mathbf{K}}_{{{\mathbf{NL}}1\left( {j,3n + m} \right)}} = \int_{0}^{{X_{0} }} {\left( {\frac{{a_{{11}} }}{\eta }\frac{{\partial W_{1} }}{{\partial X}}\frac{{\partial H_{{1j}} }}{{\partial X}}\frac{{\partial H_{{2m}} }}{{\partial X}}} \right)} dX,\;{\mathbf{K}}_{{{\mathbf{NL}}1\left( {j,4n + m} \right)}} = {\mathbf{K}}_{{{\mathbf{NL}}1\left( {j,5n + m} \right)}} = {\mathbf{K}}_{{{\mathbf{NL}}1\left( {n + j,n + m} \right)}} = 0, \hfill \\ {\mathbf{K}}_{{{\mathbf{NL}}1\left( {n + j,2n + m} \right)}} = \int_{0}^{{X_{0} }} {\left( {\frac{{a_{{11}} }}{\eta }\frac{{\partial W_{1} }}{{\partial X}}\frac{{\partial H_{{2j}} }}{{\partial X}}\frac{{\partial H_{{1m}} }}{{\partial X}} + \frac{{b_{{11}} }}{\eta }\frac{{\partial W_{1} }}{{\partial X}}\frac{{\partial H_{{6j}} }}{{\partial X}}\frac{{\partial H_{{1m}} }}{{\partial X}}} \right)} dX, \hfill \\ {\mathbf{K}}_{{{\mathbf{NL}}1\left( {n + j,3n + m} \right)}} = \int_{0}^{{X_{0} }} {\left( {\frac{{a_{{11}} }}{\eta }\frac{{\partial W_{1} }}{{\partial X}}\frac{{\partial H_{{2j}} }}{{\partial X}}\frac{{\partial H_{{2m}} }}{{\partial X}} + \frac{{b_{{11}} }}{\eta }\frac{{\partial W_{1} }}{{\partial X}}\frac{{\partial H_{{6j}} }}{{\partial X}}\frac{{\partial H_{{2m}} }}{{\partial X}}} \right)} dX \hfill \\ + \int_{{X_{0} }}^{1} {\left( {\frac{{a_{{11}} }}{\eta }\frac{{\partial W_{2} }}{{\partial X}}\frac{{\partial H_{{3j}} }}{{\partial X}}\frac{{\partial H_{{3m}} }}{{\partial X}}} \right)} dX, \hfill \\ {\mathbf{K}}_{{{\mathbf{NL}}1\left( {n + j,4n + m} \right)}} = {\mathbf{K}}_{{{\mathbf{NL}}1\left( {n + j,5n + m} \right)}} = 0,\;{\mathbf{K}}_{{{\mathbf{NL}}1\left( {2n + j,2n + m} \right)}} = \int_{0}^{{X_{0} }} {\frac{{a_{{11}} }}{\eta }\left( {\frac{{\partial U_{1} }}{{\partial X}} + \frac{{\partial \psi _{1} }}{{\partial X}}} \right)} \frac{{\partial H_{{1j}} }}{{\partial X}}\frac{{\partial H_{{1m}} }}{{\partial X}}dX, \hfill \\ {\mathbf{K}}_{{{\mathbf{NL}}1\left( {2n + j,3n + m} \right)}} = \int_{0}^{{X_{0} }} {\frac{{a_{{11}} }}{\eta }\left( {\frac{{\partial U_{1} }}{{\partial X}} + \frac{{\partial \psi _{1} }}{{\partial X}}} \right)} \frac{{\partial H_{{1j}} }}{{\partial X}}\frac{{\partial H_{{2m}} }}{{\partial X}}dX, \hfill \\ {\mathbf{K}}_{{{\mathbf{NL}}1\left( {2n + j,4n + m} \right)}} = \int_{0}^{{X_{0} }} {\left( {\frac{{b_{{11}} }}{\eta }\frac{{\partial W_{1} }}{{\partial X}}\frac{{\partial H_{{1j}} }}{{\partial X}}\frac{{\partial H_{{4m}} }}{{\partial X}}} \right)} dX, \hfill \\ {\mathbf{K}}_{{{\mathbf{NL}}1\left( {2n + j,5n + m} \right)}} = \int_{0}^{{X_{0} }} {\left( {\frac{{b_{{11}} }}{\eta }\frac{{\partial W_{1} }}{{\partial X}}\frac{{\partial H_{{1j}} }}{{\partial X}}\frac{{\partial H_{{5m}} }}{{\partial X}}} \right)} dX,\;{\mathbf{K}}_{{{\mathbf{NL}}1\left( {3n + j,3n + m} \right)}} = 0, \hfill \\ {\mathbf{K}}_{{{\mathbf{NL}}1\left( {3n + j,4n + m} \right)}} = \int_{0}^{{X_{0} }} {\left( {\frac{{b_{{11}} }}{\eta }\frac{{\partial W_{1} }}{{\partial X}}\frac{{\partial H_{{2j}} }}{{\partial X}}\frac{{\partial H_{{4m}} }}{{\partial X}}} \right)} dX, \hfill \\ {\mathbf{K}}_{{{\mathbf{NL}}1\left( {3n + j,5n + m} \right)}} = \int_{0}^{{X_{0} }} {\left( {\frac{{b_{{11}} }}{\eta }\frac{{\partial W_{1} }}{{\partial X}}\frac{{\partial H_{{2j}} }}{{\partial X}}\frac{{\partial H_{{5m}} }}{{\partial X}}} \right)} dX + \int_{{X_{0} }}^{1} {\left( {\frac{{b_{{11}} }}{\eta }\frac{{\partial W_{2} }}{{\partial X}}\frac{{\partial H_{{3j}} }}{{\partial X}}\frac{{\partial H_{{7m}} }}{{\partial X}}} \right)} dX, \hfill \\ {\mathbf{K}}_{{{\mathbf{NL}}1\left( {4n + j,4n + m} \right)}} = {\mathbf{K}}_{{{\mathbf{NL}}1\left( {4n + j,5n + m} \right)}} = {\mathbf{K}}_{{{\mathbf{NL}}1\left( {5n + j,5n + m} \right)}} = 0, \hfill \\ {\mathbf{K}}_{{{\mathbf{NL}}2\left( {j,m} \right)}} = {\mathbf{K}}_{{{\mathbf{NL}}2\left( {j,n + m} \right)}} = {\mathbf{K}}_{{{\mathbf{NL}}2\left( {j,2n + m} \right)}} = {\mathbf{K}}_{{{\mathbf{NL}}2\left( {j,3n + m} \right)}} = {\mathbf{K}}_{{{\mathbf{NL}}2\left( {j,4n + m} \right)}} = {\mathbf{K}}_{{{\mathbf{NL}}2\left( {j,5n + m} \right)}} = 0, \hfill \\ {\mathbf{K}}_{{{\mathbf{NL}}2\left( {n + j,m} \right)}} = {\mathbf{K}}_{{{\mathbf{NL}}2\left( {n + j,n + m} \right)}} = {\mathbf{K}}_{{{\mathbf{NL}}2\left( {n + j,2n + m} \right)}} = {\mathbf{K}}_{{{\mathbf{NL}}2\left( {n + j,3n + m} \right)}} = 0, \hfill \\ {\mathbf{K}}_{{{\mathbf{NL}}2\left( {n + j,4n + m} \right)}} = {\mathbf{K}}_{{{\mathbf{NL}}2\left( {n + j,5n + m} \right)}} = 0, \hfill \\ {\mathbf{K}}_{{{\mathbf{NL}}2\left( {2n + j,2n + m} \right)}} = \frac{{3a_{{11}} }}{{2\eta ^{2} }}\int_{0}^{{X_{0} }} {\left( {\frac{{\partial W_{1} }}{{\partial X}}} \right)} ^{2} \frac{{\partial H_{{1j}} }}{{\partial X}}\frac{{\partial H_{{1m}} }}{{\partial X}}dX, \hfill \\ {\mathbf{K}}_{{{\mathbf{NL}}2\left( {2n + j,3n + m} \right)}} = \frac{{3a_{{11}} }}{{2\eta ^{2} }}\int_{0}^{{X_{0} }} {\left( {\frac{{\partial W_{1} }}{{\partial X}}} \right)} ^{2} \frac{{\partial H_{{1j}} }}{{\partial X}}\frac{{\partial H_{{2m}} }}{{\partial X}}dX, \hfill \\ {\mathbf{K}}_{{{\mathbf{NL}}2\left( {2n + j,4n + m} \right)}} = {\mathbf{K}}_{{{\mathbf{NL}}2\left( {2n + j,5n + m} \right)}} = 0, \hfill \\ {\mathbf{K}}_{{{\mathbf{NL}}2\left( {3n + j,3n + m} \right)}} = \frac{{3a_{{11}} }}{{2\eta ^{2} }}\int_{0}^{{X_{0} }} {\left( {\frac{{\partial W_{1} }}{{\partial X}}} \right)} ^{2} \frac{{\partial H_{{2j}} }}{{\partial X}}\frac{{\partial H_{{2m}} }}{{\partial X}}dX + \frac{{3a_{{11}} }}{{2\eta ^{2} }}\int_{{X_{0} }}^{1} {\left( {\frac{{\partial W_{2} }}{{\partial X}}} \right)} ^{2} \frac{{\partial H_{{3j}} }}{{\partial X}}\frac{{\partial H_{{3m}} }}{{\partial X}}dX,\;{\text{and}} \hfill \\ {\mathbf{K}}_{{{\mathbf{NL}}2\left( {3n + j,4n + m} \right)}} = {\mathbf{K}}_{{{\mathbf{NL}}2\left( {3n + j,5n + m} \right)}} = {\mathbf{K}}_{{{\mathbf{NL}}2\left( {4n + j,4n + m} \right)}} = {\mathbf{K}}_{{{\mathbf{NL}}2\left( {4n + j,5n + m} \right)}} = {\mathbf{K}}_{{{\mathbf{NL}}2\left( {5n + j,5n + m} \right)}} = 0. \hfill \\ \end{gathered} $$
(58)

where j, m = 1, 2, …, n.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mao, J.J., Guo, L.J. & Zhang, W. Vibration and frequency analysis of edge-cracked functionally graded graphene reinforced composite beam with piezoelectric actuators. Engineering with Computers 39, 1563–1582 (2023). https://doi.org/10.1007/s00366-021-01546-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00366-021-01546-w

Keywords

Navigation