Skip to main content
Log in

Numerical simulation of a novel microfluidic electroosmotic micromixer with Cantor fractal structure

  • Technical Paper
  • Published:
Microsystem Technologies Aims and scope Submit manuscript

Abstract

In this paper, we design a novel low voltage of electroosmotic micromixer with fractal structure. Because of the influence of high voltage on electrode and solution, we propose an electroosmotic micromixer of low voltage. In order to optimize the electrode position, we design the Cantor fractal according to Cantor principle, and arrange the electrode pairs on the fractal. Then we study the mixing effect of the electrode pairs length on the mixing performance, the effect of the electrode position and the effect of fractal electrode group spacing on the mixing efficiency. When the electroosmotic micromixer has three electrode groups at alternating voltage of 5 V and alternating frequency of 8 Hz, the best mixing efficiency can reach 95.2% in one second. We call this micromixer Cantor fractal electroosmotic micromixer (CFEM). At the same Re, the mixing efficiency of CFEM is higher than the electrodeless micromixer 50%.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  • Ahmed F, Kim KY (2017) Parametric study of an electroosmotic micromixer with heterogeneous charged surface patches. Micromachines 8(7):199

    Article  Google Scholar 

  • Chau JLH, Leung AYL, Yeung KL (2003) Zeolite micromembranes. Lab Chip 3(2):53–55

    Article  Google Scholar 

  • Chen Xueye, Li Tiechuan (2017) A novel passive micromixer designed by applying an optimization algorithm to the zigzag microchannel. Chem Eng J 313:1406–1414

    Article  Google Scholar 

  • Chen X, Zhang L (2017a) A review on micromixers actuated with magnetic nanomaterials. Microchimica Acta 184(10):3639–3649 (3(3))

    Article  Google Scholar 

  • Chen X, Zhang L (2017b) Review in manufacturing methods of nanochannels of bio-nanofluidic chips. Sens Actuators B Chem 1:1. https://doi.org/10.1016/j.snb.2017.07.139.7X

    Article  Google Scholar 

  • Chen X, Zhao Z (2017) Numerical investigation on layout optimization of obstacles in a three-dimensional passive micromixer. Analytica Chimica Acta 964:142–149 (7(3))

    Article  Google Scholar 

  • Chen H, Zhang Y, Mezic I et al (2003) Numerical simulation of an electroosmotic micromixer. ASME Publ FED 259:653–658

    Google Scholar 

  • Chen X, Shen J, Hu Z, Huo X (2016a) Manufacturing methods and applications of membranes in microfluidics. Biomed Microdevice 18(6):1–13

    Article  Google Scholar 

  • Chen X, Li T, Zeng H, Hu Z, Fu B (2016b) Numerical and experimental investigation on micromixers with serpentine microchannels. Int J Heat Mass Transf 98:131–140

    Article  Google Scholar 

  • Chen X, Li T, Shen J et al (2016c) Fractal design of microfluidics and nanofluidics—a review. Chemom Intell Lab Syst 155:19–25

    Article  Google Scholar 

  • Chen X, Li T, Shen J, Hu Z (2017) From structures, packaging to application: a system-level review for micro direct methanol fuel cell. Renew Sustain Energy Rev 80:669–678 (6(2))

    Article  Google Scholar 

  • Forouzanfar S, Talebzadeh N, Zargari S et al (2015) The effect of microchannel width on mixing efficiency of microfluidic electroosmotic mixer. In: Robotics and mechatronics (ICROM), 2015 3rd RSI international conference on. IEEE, 2015, pp 629–634

  • Green NG, Ramos A, González A et al (2000) Fluid flow induced by nonuniform ac electric fields in electrolytes on microelectrodes. I. Experimental measurements. Phys Rev E 61(4):4011

    Article  Google Scholar 

  • Lu LH, Ryu KS, Liu C (2002) A magnetic microstirrer and array for microfluidic mixing. Microelectromech Syst J 11(5):462–469

    Article  Google Scholar 

  • Lu P, Liu X, Zhang C (2017) Electroosmotic flow in a rough nanochannel with surface roughness characterized by fractal Cantor. Micromachines 8(6):190

    Article  Google Scholar 

  • Nimafar M, Viktorov V, Martinelli M (2012) Experimental investigation of split and recombination micromixer in confront with basic T-and O-type micromixers. Int J Mech Appl 2(5):61–69

    Google Scholar 

  • Niu X, Wen W, Liu L et al (2006) Active microfluidic mixer chip. Appl Phys Lett 88(15):153508

    Article  Google Scholar 

  • Oddy MH, Santiago JG, Mikkelsen JC (2001) Electrokinetic instability micromixing. Anal Chem 73(24):5822–5832

    Article  Google Scholar 

  • Sasaki N, Kitamori T, Kim HB (2010) Experimental and theoretical characterization of an AC electroosmotic micromixer. Anal Sci 26(7):815–819

    Article  Google Scholar 

  • Shi YZ, Xiong S, Zhang Y et al (2018a) Sculpting nanoparticle dynamics for single-bacteria-level screening and direct binding-efficiency measurement. Nat Commun 9(1):815

    Article  Google Scholar 

  • Shi Y, Xiong S, Chin LK et al (2018b) Nanometer-precision linear sorting with synchronized optofluidic dual barriers. Sci Adv 4(1):eaao0773

    Article  Google Scholar 

  • Simonnet C, Groisman A (2005) Chaotic mixing in a steady flow in a microchannel. Phys Rev Lett 94(13):134501

    Article  Google Scholar 

  • Yin Z (2018) Rapid prototyping of PET microfluidic chips by laser ablation and water-soaking bonding method. Micro Nano Lett 13(9):1302–1305

    Article  Google Scholar 

  • Yin Z, Zou H (2017) Multilayer patterning technique for micro-and nanofluidic chip fabrication. Microfluid Nanofluid 21(12):174

    Article  Google Scholar 

  • Yin Z, Cheng E, Zou H (2018) Fast microfluidic chip fabrication technique by laser erosion and sticky tape assist bonding technique. J Nanosci Nanotechnol 18(6):4082–4086

    Article  Google Scholar 

  • Yoon MS, Kim BJ, Sung HJ (2008) Pumping and mixing in a microchannel using AC asymmetric electrode arrays. Int J Heat Fluid Flow 29(1):269–280

    Article  Google Scholar 

  • Zadeh HF (2005) Experimental validation of flow and mass transport in an electrically-excited micromixer. Wissenschaftliche Berichte FZKA 7152

  • Zhou T, Wang H, Shi L et al (2016) An enhanced electroosmotic micromixer with an efficient asymmetric lateral structure. Micromachines 7(12):218

    Article  Google Scholar 

  • Zhou T, Ge J, Shi L et al (2018a) Dielectrophoretic choking phenomenon of a deformable particle in a converging-diverging microchannel. Electrophoresis 39(4):590–596

    Article  Google Scholar 

  • Zhou T, Deng Y, Zhao H et al (2018b) The mechanism of size-based particle separation by dielectrophoresis in the viscoelastic flows. J Fluids Eng 140(9):091302

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by The Key Project of Department of Education of Liaoning Province (JZL201715401), Liaoning Province BaiQianWan Talent Project. We sincerely thank Prof. Chong Liu for his kind guidance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xueye Chen.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wu, Z., Chen, X. Numerical simulation of a novel microfluidic electroosmotic micromixer with Cantor fractal structure. Microsyst Technol 25, 3157–3164 (2019). https://doi.org/10.1007/s00542-019-04311-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00542-019-04311-8

Navigation