Skip to main content

Advertisement

Log in

Fabrication of three-dimensional mPEG-PCL-mPEG scaffolds combined with cell-laden gelatin methacrylate (GelMA) hydrogels using thermal extrusion coupled with photo curable technique

  • Technical Paper
  • Published:
Microsystem Technologies Aims and scope Submit manuscript

Abstract

It has remained a great challenge to design a tissue engineering scaffold for tissue regeneration, which should be suitable for cell adhesion, proliferation and differentiation. One possible solution may be to fabricate the scaffolds with the stable mechanical property, controllable pore size and good interconnectivity, and allowing homogenous cell distribution. This study described the key technology of fabricating three-dimensional (3D) mPEG-PCL-mPEG scaffolds combined with cell-laden gelatin methacrylate (GelMA) hydrogels. Firstly, a dual-nozzle 3D printing system was successfully developed using thermal extrusion coupled with a photo curable technique. Then, the triblock material mPEG-PCL-mPEG was synthesized and evaluated. Subsequently, the fabricated 3D mPEG-PCL-mPEG scaffolds were injected with cell-laden GelMA hydrogels. Finally, the mPEG-PCL-mPEG scaffolds were evaluated. The evaluation results showed that this 3D mPEG-PCL-mPEG scaffolds technology is a potentially powerful approach, which may be used in a variety of tissue engineering applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  • Abbott A (2003) Cell culture: biology’s new dimension. Nature 424:870–872

    Article  Google Scholar 

  • Agarwal R, García AJ (2015) Biomaterial strategies for engineering implants for enhanced osseointegration and bone repair. Adv Drug Deliv Rev 94:53–62

    Article  Google Scholar 

  • Baker BM, Chen CS (2012) Deconstructing the third dimension–how 3D culture microenvironments alter cellular cues. J Cell Sci 125(13):3015–3024

    Article  Google Scholar 

  • Bernardin JD, Mudawar I, Walsh CB, Franses EI (1997) Contact angle temperature dependence for water droplets on practical aluminum surfaces. Int J Heat Mass Transf 40(5):1017–1033

    Article  Google Scholar 

  • Bertol LS, Schabbach R, dos Santos LAL (2017) Different post-processing conditions for 3D bioprinted α-tricalcium phosphate scaffolds. J Mater Sci Mater Med 28(10):168

    Article  Google Scholar 

  • Bose S, Vahabzadeh S, Bandyopadhyay A (2013) Bone tissue engineering using 3D printing. Mater Today 16(12):496–504

    Article  Google Scholar 

  • Brydone A, Meek D, Maclaine S (2010) Bone grafting, orthopaedic biomaterials, and the clinical need for bone engineering. Proc Inst Mech Eng Part H J Eng Med 224(12):1329–1343

    Article  Google Scholar 

  • Cohen DL, Lo W, Tsavaris A, Peng D, Lipson H, Bonassar LJ (2010) Increased mixing improves hydrogel homogeneity and quality of three-dimensional printed constructs. Tissue Eng Part C Methods 17(2):239–248

    Article  Google Scholar 

  • Cuadros TR, Erices AA, Aguilera JM (2015) Porous matrix of calcium alginate/gelatin with enhanced properties as scaffold for cell culture. J Mech Behav Biomed Mater 46:331–342

    Article  Google Scholar 

  • Do AV, Khorsand B, Geary SM, Salem AK (2015) 3D printing of scaffolds for tissue regeneration applications. Adv Healthcare Mater 4(12):1742–1762

    Article  Google Scholar 

  • Doblaré M, Garcıa J, Gómez M (2004) Modelling bone tissue fracture and healing: a review. Eng Fract Mech 71(13–14):1809–1840

    Article  Google Scholar 

  • E ISO 10993-5 (2009) Biological evaluation of medical devices. Part 5: tests for in vitro cytotoxicity. International Organization for Standardization, Geneva

    Google Scholar 

  • Edep ME, Shirani J, Wolf P, Brown DL (2000) Matrix metalloproteinase expression in nonrheumatic aortic stenosis. Cardiovasc Pathol 9(5):281–286

    Article  Google Scholar 

  • Erdemli Ö, Usanmaz A, Keskin D, Tezcaner A (2014) Characteristics and release profiles of MPEG-PCL-MPEG microspheres containing immunoglobulin G. Colloids Surf B Biointerfaces 117:487–496

    Article  Google Scholar 

  • Fillingham Y, Jacobs J (2016) Bone grafts and their substitutes. Bone Joint J 98(1 Supple A):6–9

    Article  Google Scholar 

  • Florencio-Silva R, Sasso GRDS, Sasso-Cerri E, Simões MJ, Cerri PS (2015) Biology of bone tissue: structure, function, and factors that influence bone cells. BioMed Res Int 2015:421746

    Article  Google Scholar 

  • Fu S, Ni P, Wang B, Chu B, Zheng L, Luo F, Luo J, Qian Z (2012) Injectable and thermo-sensitive PEG-PCL-PEG copolymer/collagen/n-HA hydrogel composite for guided bone regeneration. Biomaterials 33(19):4801–4809

    Article  Google Scholar 

  • Gibbs DM, Vaezi M, Yang S, Oreffo RO (2014) Hope versus hype: what can additive manufacturing realistically offer trauma and orthopedic surgery? Regen Med 9(4):535–549

    Article  Google Scholar 

  • Gruskin E, Doll BA, Futrell FW, Schmitz JP, Hollinger JO (2012) Demineralized bone matrix in bone repair: history and use. Adv Drug Deliv Rev 64(12):1063–1077

    Article  Google Scholar 

  • Guillotin B, Guillemot F (2011) Cell patterning technologies for organotypic tissue fabrication. Trends Biotechnol 29(4):183–190

    Article  Google Scholar 

  • Hollister SJ (2005) Porous scaffold design for tissue engineering. Nat Mater 4(7):518

    Article  Google Scholar 

  • Holzwarth JM, Ma PX (2011) 3D nanofibrous scaffolds for tissue engineering. J Mater Chem 21(28):10243–10251

    Article  Google Scholar 

  • Jiang CP, Chen YY, Hsieh MF (2013a) Biofabrication and in vitro study of hydroxyapatite/mPEG–PCL–mPEG scaffolds for bone tissue engineering using air pressure-aided deposition technology. Mater Sci Eng C 33(2):680–690

    Article  Google Scholar 

  • Jiang CP, Chen YY, Hsieh MF, Lee HM (2013b) Solid freeform fabrication and in vitro response of osteoblast cells of mPEG-PCL-mPEG bone scaffolds. Biomed Microdevice 15(2):369–379

    Article  Google Scholar 

  • Jiankang H, Dichen L, Yaxiong L, Bo Y, Hanxiang Z, Qin L, Bingheng L, Yi L (2009) Preparation of chitosan–gelatin hybrid scaffolds with well-organized microstructures for hepatic tissue engineering. Acta Biomater 5(1):453–461

    Article  Google Scholar 

  • Kricheldorf HR, Kreiser-Saunders I, Boettcher C (1995) Polylactones: 31. Sn (II) octoate-initiated polymerization of l-lactide: a mechanistic study. Polymer 36(6):1253–1259

    Article  Google Scholar 

  • Lietman SA, Tomford WW, Gebhardt MC, Springfield DS, Mankin HJ (2000) Complications of irradiated allografts in orthopaedic tumor surgery. Clin Orthop Relat Res 375:214–217

    Article  Google Scholar 

  • Lin RZ, Chen YC, Moreno-Luna R, Khademhosseini A, Melero-Martin JM (2013) Transdermal regulation of vascular network bioengineering using a photopolymerizable methacrylated gelatin hydrogel. Biomaterials 34(28):6785–6796

    Article  Google Scholar 

  • Liu X, Smith LA, Hu J, Ma PX (2009) Biomimetic nanofibrous gelatin/apatite composite scaffolds for bone tissue engineering. Biomaterials 30(12):2252–2258

    Article  Google Scholar 

  • Martin I, Wendt D, Heberer M (2004) The role of bioreactors in tissue engineering. Trends Biotechnol 22(2):80–86

    Article  Google Scholar 

  • Mouriño V, Boccaccini AR (2010) Bone tissue engineering therapeutics: controlled drug delivery in three-dimensional scaffolds. J R Soc Interface 7(43):209–227

    Article  Google Scholar 

  • Murphy SV, Atala A (2014) 3D bioprinting of tissues and organs. Nat Biotechnol 32(8):773

    Article  Google Scholar 

  • Neufurth M, Wang X, Wang S, Steffen R, Ackermann M, Haep ND, Schröder HC, Müller WEG (2017) 3D printing of hybrid biomaterials for bone tissue engineering: calcium-polyphosphate microparticles encapsulated by polycaprolactone. Acta Biomater 64:377–388

    Article  Google Scholar 

  • Nichol JW, Koshy ST, Bae H, Hwang CM, Yamanlar S, Khademhosseini A (2010) Cell-laden microengineered gelatin methacrylate hydrogels. Biomaterials 31(21):5536–5544

    Article  Google Scholar 

  • Nijenhuis A, Grijpma D, Pennings A (1992) Lewis acid catalyzed polymerization of l-lactide. Kinetics and mechanism of the bulk polymerization. Macromolecules 25(24):6419–6424

    Article  Google Scholar 

  • Occhetta P, Visone R, Russo L, Cipolla L, Moretti M, Rasponi M (2015) VA-086 methacrylate gelatine photopolymerizable hydrogels: a parametric study for highly biocompatible 3D cell embedding. J Biomed Mater Res Part A 103(6):2109–2117

    Article  Google Scholar 

  • Sachlos E, Reis N, Ainsley C, Derby B, Czernuszka J (2003) Novel collagen scaffolds with predefined internal morphology made by solid freeform fabrication. Biomaterials 24(8):1487–1497

    Article  Google Scholar 

  • Schneider OD, Weber F, Brunner TJ, Loher S, Ehrbar M, Schmidlin PR, Stark WJ (2009) In vivo and in vitro evaluation of flexible, cottonwool-like nanocomposites as bone substitute material for complex defects. Acta Biomater 5(5):1775–1784

    Article  Google Scholar 

  • Smith IO, McCabe LR, Baumann MJ (2006) MC3T3-E1 osteoblast attachment and proliferation on porous hydroxyapatite scaffolds fabricated with nanophase powder. Int J Nanomed 1(2):189

    Article  Google Scholar 

  • Stephens J, Cooper JA, Phelan F, Dunkers JP (2007) Perfusion flow bioreactor for 3D in situ imaging: investigating cell/biomaterials interactions. Biotechnol Bioeng 97(4):952–961

    Article  Google Scholar 

  • Strong DM, Friedlaender GE, Tomford WW, Springfield DS, Shives TC, Burchardt H, Enneking W, Mankin HJ (1996) Immunologic responses in human recipients of osseous and osteochondral allografts. Clin Orthop Relat Res 326:107–114

    Article  Google Scholar 

  • Subia B, Kundu J, Kundu S (2010) Biomaterial scaffold fabrication techniques for potential tissue engineering applications. Tissue engineering. InTech2010, London

    Google Scholar 

  • Tang D, Tare RS, Yang LY, Williams DF, Ou KL, Oreffo ROC (2016) Biofabrication of bone tissue: approaches, challenges and translation for bone regeneration. Biomaterials 83:363–382

    Article  Google Scholar 

  • Ullah F, Othman MBH, Javed F, Ahmad Z, Akil HM (2015) Classification, processing and application of hydrogels: a review. Mater Sci Eng C 57:414–433

    Article  Google Scholar 

  • Van Den Bulcke AI, Bogdanov B, De Rooze N, Schacht EH, Cornelissen M, Berghmans H (2000) Structural and rheological properties of methacrylamide modified gelatin hydrogels. Biomacromol 1(1):31–38

    Article  Google Scholar 

  • Yao X, Panichpisal K, Kurtzman N, Nugent K (2007) Cisplatin nephrotoxicity: a review. Am J Med Sci 334(2):115–124

    Article  Google Scholar 

  • Yaszemski MJ, Payne RG, Hayes WC, Langer R, Mikos AG (1996) Evolution of bone transplantation: molecular, cellular and tissue strategies to engineer human bone. Biomaterials 17(2):175–185

    Article  Google Scholar 

  • Yuan Y, Lee TR (2013) Contact angle and wetting properties, surface science techniques. Springer, Berlin, pp 3–34

    Google Scholar 

  • Zhu N, Chen X (2013) Biofabrication of tissue scaffolds. Advances in biomaterials science and biomedical applications. InTech2013, London

    Google Scholar 

Download references

Acknowledgements

This work was supported by MOST of Taiwan grant (106-2221-E-150-001) and NSFC (Natural Science Foundation of China) project grant (No.81671928). LPW is supported by National Health and Medical Research Council (NHMRC) Fellowship (No. APP1158402), Channel 7 Children’s Research Foundation grant (No.181662), and NSFC (No.81671928).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Liping Wang or Cho-Pei Jiang.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dong, J., Yang, YD., Wang, L. et al. Fabrication of three-dimensional mPEG-PCL-mPEG scaffolds combined with cell-laden gelatin methacrylate (GelMA) hydrogels using thermal extrusion coupled with photo curable technique. Microsyst Technol 25, 3339–3355 (2019). https://doi.org/10.1007/s00542-018-4190-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00542-018-4190-x

Navigation