Skip to main content
Log in

Micro-electroforming high aspect ratio microstructures under magnetic field

  • Technical Paper
  • Published:
Microsystem Technologies Aims and scope Submit manuscript

Abstract

High-aspect-ratio (HAR) micro-electroforming is a significantly challengeable implementation to manufacture metallic microstructures and microparts mainly due to mass transportation limitation effect. In this paper, flow pattern and flow rate change characteristics within HAR micro-cavity during electroforming under magnetic field are investigated, and evaluations of the electroformed micro-sized HAR nickel features under the improved magnetohydrodynamic (MHD)-governed condition are carried out. It was found that, five electrolyte flow-pattern zones can be formed within the horizontally placed micro-cavity under the MHD condition and favorable mass transfer effects can be created when the current field applied is perpendicular to the gravity field; HAR (≥ 7) nickel microstructure with good surface quality and few plating defects can be produced at a relatively high current density (up to 11 A/dm2) under the combined actions of MHD-driven convection and external forced-convection; MHD-assisted nickel micro-electroforms have a higher microhardness, better surface morphologies and fewer defects than the ones obtained without the superimposition of the magnetic field. MHD-driven convection benefits the desirable implementation of HAR micro-electroforming processes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  • Aaboubi O, Msellak K (2017) Magnetic field effects on the electrodeposition of CoNiMo alloys. Appl Surf Sci 396:375–383

    Article  Google Scholar 

  • Aaboubi O, Ali Omar AY, Franczak A et al (2015) Investigation of the electrodeposition kinetics of Ni–Mo alloys in the presence of magnetic field. J Electroanal Chem 737:226–234

    Article  Google Scholar 

  • Bund A, Ispas A, Mutschke G (2008) Magnetic field effects on electrochemical metal depositions. Sci Technol Adv Mater 9(2):024208

    Article  Google Scholar 

  • Devos O, Olivier A, Chopart JP et al (1998a) Magnetic field effects on nickel electrodeposition. J Electrochem Soc 145(2):401–405

    Article  Google Scholar 

  • Devos O, Aaboubi O, Chopart JP et al (1998b) Magnetic field effects on nickel electrodeposition ii. a steady-state and dynamic electrochemical study. J Electrochem Soc 145(12):4135–4139

    Article  Google Scholar 

  • Duch M, Esteve J, Gomez E et al (2002) Electrodeposited Co–Ni alloys for MEMS. J Micromech Microeng 12(4):400–405

    Article  Google Scholar 

  • Fahidy TZ (1983) Magnetoelectrolysis. J Appl Electrochem 13(5):553–563

    Article  Google Scholar 

  • Ganesh V, Vijayaraghavan D, Lakshminarayanan V (2005) Fine grain growth of nickel electrodeposit: effect of applied magnetic field during deposition. Appl Surf Sci 240(1–4):286–295

    Article  Google Scholar 

  • Gorobets OY, Gorobets VY, Derecha DO et al (2008) Nickel electrodeposition under influence of constant homogeneous and high-gradient magnetic field. J Phys Chem C 112(9):3373–3375

    Article  Google Scholar 

  • Griffiths SK, Nilson RH, Ting A et al (1998) Modeling electrodeposition for LIGA microdevice fabrication. Microsyst Techonol 4(2):98–101

    Article  Google Scholar 

  • Ispas A, Matsushima H, Plieth W et al (2007) Influence of a magnetic field on the electrodeposition of nickel–iron alloys. Electrochim Acta 52(8):2785–2795

    Article  Google Scholar 

  • Jia WP, Wu MH, Yang F (2012) Surface morphology and texture of nickel crystal micro-casting by electroforming under magnetic field. Adv Mater Res 535–537:450–454

    Article  Google Scholar 

  • Kołodziejczyk K, Miękoś E, Zieliński M et al (2018) Influence of constant magnetic field on electrodeposition of metals, alloys, conductive polymers, and organic reactions. J Solid State Electrochem 22(6):1629–1647

    Article  Google Scholar 

  • Krause A, Hamann C, Uhlemann M et al (2005) Influence of a magnetic field on the morphology of electrodeposited cobalt. J Magn Magn Mater 290–291:261–264

    Article  Google Scholar 

  • Liu G, Huang X, Xiong Y et al (2008) Fabricating HARMS by using megasonic assisted electroforming. Microsyst Technol 14(9–11):1223–1226

    Article  Google Scholar 

  • Lv YD (2012) Experimental research on micro-electroforming technology under a magnetic field. Master Dissertation. Henan Polytechnic University, Jiaozuo (in Chinese)

  • Matsushima H, Nohira T, Mogi I et al (2004) Effects of magnetic fields on iron electrodeposition. Surf Coat Technol 179(2–3):245–251

    Article  Google Scholar 

  • Matsushima H, Bund A, Plieth W et al (2007) Copper electrodeposition in a magnetic field. Electrochim Acta 53(1):161–166

    Article  Google Scholar 

  • Ming PM, Zhu D, Hu YY et al (2009) Micro-electroforming under periodic vacuum-degassing and temperature-gradient conditions. Vacuum 83(9):1191–1199

    Article  Google Scholar 

  • Miura M, Oshikiri Y, Sugiyama A et al (2017) Magneto-dendrite effect: copper electrodeposition under high magnetic field. Sci Rep 7:45511

    Article  Google Scholar 

  • Weinmann M, Jung A, Natter H (2013) Magnetic field-assisted electroforming of complex geometries. J Solid State Electrochem 17(10):2721–2729

    Article  Google Scholar 

  • Weng FT (2005) A study of cathode agitation in ultrasonic-aided microelectroforming. Int J Adv Manuf Technol 25(9–10):909–912

    Article  Google Scholar 

  • Yamaguchi M, Tanimoto Y (2006) Magneto-science. In: Magneto-science: magnetic field effects on materials: fundamentals and applications, Springer series in materials science, vol 89. ISBN 978-3-540-37061-1. Kodansha Ltd., Springer, Berlin

  • Yu Y, Song Z, Ge H et al (2015) Effects of magnetic fields on the electrodeposition process of cobalt. Int J Electrochem Sci 10:4812–4819

    Google Scholar 

Download references

Acknowledgements

This work was financially supported by the National Natural Science Foundation of China [No .51475149], Program for Science & Technology Innovation Team in Universities of Henan Province (No. 15IRTSTHN013), Program for Science & Technology Innovation Team in Henan Polytechnic University (No. T2014-1).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Xinchao Li or Pingmei Ming.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, X., Li, X., Ming, P. et al. Micro-electroforming high aspect ratio microstructures under magnetic field. Microsyst Technol 25, 1401–1411 (2019). https://doi.org/10.1007/s00542-018-4090-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00542-018-4090-0

Navigation