Skip to main content
Log in

A design method for nanofluidic circuits

  • Technical Paper
  • Published:
Microsystem Technologies Aims and scope Submit manuscript

Abstract

A design method is proposed for nanofluidic circuits, based on the flow equation for a nanoscale fluid flow. This method incorporates the use of the concepts of the flow resistance, the flow rate, the pressure drop and the power loss, as like in electric circuits. The equations for calculating the flow resistance and the power loss in exemplary nanofluidic circuits including in a nanotube tree are presented. It was found that the nanotube size and the fluid-tube wall interaction both have great influences on the flow resistance and the power loss in nanochannel flow. Exemplary design analysis is given for some nanofluidic circuits, based on the proposed method.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  • Abraham FF (1978) The interfacial density profile of a Lennard-Jones fluid in contact with a (100) Lennard-Jones wall and its relationship to idealized fluid/wall systems: a Monte Carlo simulation. J Chem Phys 68:3713–3716

    Article  Google Scholar 

  • Aguillela VM, Alcaraz A (2009) A fluid approach to simple circuits. Nat Nanotech 4:403–404

    Article  Google Scholar 

  • Ahn DJ (2008) Nano pump using molecular motor. US Patent App. 12/200,888

  • Alibakhshi MA, Xie Q, Li Y, Duan C (2016) Accurate measurement of liquid transport through nanoscale conduits. Sci Rep 6:24936

    Article  Google Scholar 

  • Aubert JH, Tirrell M (1982) Effective viscosity of dilute polymer solutions near confining boundaries. J Chem Phys 77:553–561

    Article  Google Scholar 

  • Bitsanis I, Magda JJ, Tirrell M, Davis HT (1987) Molecular dynamics of flow in micropores. J Chem Phys 87:1733–1750

    Article  Google Scholar 

  • Bojko A, Andreatta G, Montagne F, Renaud P, Pugin R (2014) Fabrication of thermo-responsive nano-valve by grafting-to in melt of poly(N-isopropylacrylamide) onto nanoporous silicon nitride membranes. J Membr Sci 468:118–125

    Article  Google Scholar 

  • Chan DYC, Horn RG (1985) The drainage of thin liquid films between solid surfaces. J Chem Phys 83:5311–5324

    Article  Google Scholar 

  • Chauveteau G, Tirrell M, Omari A (1984) Concentration dependence of the effective viscosity of polymer solutions in small pores with repulsive or attractive walls. J Coll Int Sci 100:41–54

    Article  Google Scholar 

  • Daiguji H, Yang P, Majumdar A (2004) Ion transport in nanofluidic channels. Nano Lett 4:137–142

    Article  Google Scholar 

  • Daiguji H, Oka Y, Shirono K (2005) Nanofluidic diode and bipolar transistor. Nano Lett 5:2274–2280

    Article  Google Scholar 

  • Duan C, Majumdar A (2010) Anomalous ion transport in 2-nm hydrophilic nanochannels. Nat Nanotech 5:848–852

    Article  Google Scholar 

  • Fuest M, Boone C, Rangharajan KK, Conlisk AT, Prakash S (2015) A three-state nanofluidic field effect switch. Nano Lett 15:2365–2371

    Article  Google Scholar 

  • Fuest M, Rangharajan KK, Boone C, Conlisk AT, Prakash S (2017) Cation dependent surface charge regulation in gated nanofluidic devices. Anal Chem 89:1593–1601

    Article  Google Scholar 

  • Horn RG, Smith DT, Haller W (1989) Surface forces and viscosity of water measured between silica sheets. Chem Phys Lett 162:404–408

    Article  Google Scholar 

  • Humplik T, Lee J, O’Hern SC, Fellman BA, Baig MA, Hassan SF, Atieh MA, Rahman F, Laoui T, Karnik R, Wang EN (2011) Nanostructured materials for water desalination. Nanotech 22:292001

    Article  Google Scholar 

  • Jabbarzadeh A, Atkinson JD, Tanner RI (1997) Rheological properties of thin liquid films by molecular dynamics simulations. J Nonnewton Fluid Mech 69:169–193

    Article  Google Scholar 

  • Karnik R, Fan R, Yue M, Li D, Yang P, Majumdar A (2005) Electrostatic control of ions and molecules in nanofluidic transistors. Nano Lett 5:943–948

    Article  Google Scholar 

  • Karnik R, Castelino K, Majumdar A (2006) Field-effect control of protein transport in a nanofluidic transistor circuit. Appl Phys Lett 88:123114

    Article  Google Scholar 

  • Kasiteropoulou D, Karakasidis TE, Liakopoulos A (2013) Mesoscopic simulation of fluid flow in periodically grooved microchannels. Comput Fluids 74:91–101

    Article  MATH  Google Scholar 

  • Lee KP, Leese H, Matia D (2012) Water flow enhancement in hydrophilic nanochannels. Nanoscale 4:2621–2627

    Article  Google Scholar 

  • Liakopoulos A, Sofos F, Karakasidis TE (2016) Friction factor in nanochannel flows. Microfluid Nanofluid 20:24–30

    Article  Google Scholar 

  • Liakopoulos A, Sofos F, Karakasidis TE (2017) Darcy–Weisbach friction factor at the nanoscale: from atomistic calculations to continuum models. Phys Fluids 29:052003

    Article  Google Scholar 

  • Magda JJ, Tirrell M, Davis HT (1985) Molecular dynamics of narrow, liquid-filled Pores. J Chem Phys 83:1888–1901

    Article  Google Scholar 

  • Meyer E, Overney RM, Dransfeld K, Gyalog T (1998) Nanoscience-friction and rheology on the nanometer scale. World Scientific Press, River edge

    Book  Google Scholar 

  • Perry JL, Kandlikar SG (2006) Review of fabrication of nanochannels for single phase liquid flow. Microfluid Nanofluid 2:185–193

    Article  Google Scholar 

  • Pinti M, Kambham T, Wang B, Prakash S (2013) Fabrication of centimeter long, ultra-low aspect ratio nanochannel networks in borosilicate glass substrates. ASME J Nanotech Eng Med 4:021003

    Article  Google Scholar 

  • Piruska A, Gong M, Sweedler JV, Bohn PW (2010) Nanofluidics in chemical analysis. Chem Soc Rev 39:1060–1072

    Article  Google Scholar 

  • Plecis A, Schoch RB, Renaud P (2005) Ionic transport phenomena in nanofluidics: experimental and theoretical study of the exclusion-enrichment effect on a chip. Nano Lett 5:1147–1155

    Article  Google Scholar 

  • Prakash S, Conlisk AT (2016) Field effect nanofluidics. Lab Chip 16:3855–3865

    Article  Google Scholar 

  • Prakash S, Zambrano H, Rosenthal-Kim EQ (2015) Electrokinetic transport in silica nanochannels with asymmetric surface charge. Microfluid Nanofluid 19:1455–1464

    Article  Google Scholar 

  • Rahmatipour H, Azimian AR, Atlaschian O (2017) Study of fluid flow behavior in smooth and rough nanochannels through oscillatory wall by molecular dynamics simulation. Physica A Stat Mech Appl 465:159–174

    Article  Google Scholar 

  • Sofos F, Karakasidis TE, Liakopoulos A (2013) Parameters affecting the slip length at the nanoscale. J Comput Theor Nanosci 10:648–650

    Article  Google Scholar 

  • Somers SA, Davis HT (1992) Microscopic dynamics of fluids confined between smooth and atomically structured solid surfaces. J Chem Phys 96:5389–5407

    Article  Google Scholar 

  • Stein D, Kruithof M, Dekker C (2004) Surface-charge-governed ion transport in nanofluidic channels. Phy Rev Lett 93:035901

    Article  Google Scholar 

  • Takaba H, Onumata Y, Nakao S (2007) Molecular simulation of pressure-driven fluid flow in nanoporous membranes. J Chem Phys 127:054703

    Article  Google Scholar 

  • Wei C (2007) Implantable nano pump for drug delivery. US Patent App. 11/906,238

  • Yu M, Falconer JL, Amundsen TJ, Hong M, Noble RD (2007) A controllable nanometer-sized valve. Adv Mater 19:3032–3036

    Article  Google Scholar 

  • Zhang YB (2006) Flow factor of non-continuum fluids in one-dimensional flow. Ind Lubr Tribol 58:151–169

    Article  Google Scholar 

  • Zhang YB (2015) A quantitative comparison between the flow factor approach model and the molecular dynamics simulation results for the flow of a confined molecularly thin fluid film. Theor Comput Fluid Dyn 29:193–204

    Article  Google Scholar 

  • Zhang YB (2016a) The flow equation for a nanoscale fluid flow. Int J Heat Mass Transf 92:1004–1008

    Article  Google Scholar 

  • Zhang YB (2016b) Calculating the maximum flowing velocity of the Poiseuille flow in a nano channel by the flow factor approach model. Int Commun Heat Mass Transf 73:111–113

    Article  Google Scholar 

  • Zhang YB (2016c) Effect of wall surface roughness on the mass transfer in a nano channel. Int J Heat Mass Transf 100:295–302

    Article  Google Scholar 

  • Zhang YB (2017a) Transport in nanotube tree. Int J Heat Mass Transf 114:536–540

    Article  Google Scholar 

  • Zhang YB (2017b) Influence of pore wall surface property on flux of nanoporous filtering membrane. Front Heat Mass Transf 9:26

    Google Scholar 

  • Zhang YB (2018) Optimum design for cylindrical-shaped nanoporous filtration membrane. Int Commun Heat Mass Transf. https://doi.org/10.1016/j.icheatmasstransfer.2018.06.003

  • Zhang W, Li D (2007) Simulation of low speed 3D nanochannel flow. Microfluid Nanofluid 3:417–425

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yongbin Zhang.

Ethics declarations

Conflict of interests

The author declares that there is no conflict of interest with this research.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, Y. A design method for nanofluidic circuits. Microsyst Technol 25, 371–379 (2019). https://doi.org/10.1007/s00542-018-4029-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00542-018-4029-5

Navigation