Skip to main content
Log in

Fabrication and evaluation of a passive SU8-based micro direct glucose fuel cell

  • Technical Paper
  • Published:
Microsystem Technologies Aims and scope Submit manuscript

Abstract

A passive micro direct glucose fuel cell (μDGFC) using SU8-current collector structures of 8 × 14 mm with a grid that allows the delivery of the reagents to the membrane-electrode assembly (MEA) by diffusion and with dimensions of ~ 200 × ~ 180 μm were fabricated by a UV-lithography technique. The SU8-current collectors were coated with Au to provide electric conductivity; a passive μDGFC was set by sandwiching an MEA between two SU8-current collectors and placed between two methacrylate pieces. The electrocatalysts consisted of commercial Au/C as anode and Pt/C as cathode. μDGFC characterization was done by measuring the polarization curves at a glucose concentration close to that found in human blood. The maximum power density achieved was ~ 0.30 mW cm−2 using 5 mM glucose as fuel and oxygen delivered from air as an oxidant. The passive micro fuel cell showed a constant current density for 30 min at a potential of 0.3 V corresponding to the maximum power density.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Ansari MZ, Bisen M, Cho C (2018) Modelling and analysis of diaphragm integrated SU8/CB nanocomposite piezoresistive polymer microcantilever biosensor. Microsyst Technol. https://doi.org/10.1007/s00542-018-3777-6

    Google Scholar 

  • Campo AD, Greiner C (2007) SU-8: a photoresist for high-aspect-ratio and 3D submicron lithography. J Micromech Microeng 17:R81

    Article  Google Scholar 

  • Cha H-Y, Choi H-G, Nam J-D, Lee Y, Cho SM, Lee E-S, Lee J-K, Chung C-H (2004) Fabrication of all-polymer micro-DMFCs using UV-sensitive photoresist. Electrochim Acta 50:795–799

    Article  Google Scholar 

  • Dector A, Escalona-Villalpando RA, Dector D, Vallejo-Becerra V, Chavez-Ramírez AU, Arriaga LG, Ledesma-García J (2015) Perspective use of direct human blood as an energy source in air- breathing hybrid microfluidic fuel cells. J Power Sources 288:70–75

    Article  Google Scholar 

  • Dector A, Galindo-de-la-Rosa J, Amaya-Cruz DM, Ortíz-Verdín A, Guerra-Balcázar M, Olivares-Ramírez JM, Arriaga LG, Ledesma-García J (2017) Towards autonomous lateral flow assays: paper-based microfluidic fuel cell inside and HIV-test using a blood sample as fuel. Int J Hydrogen Energy 42:27979–27986

    Article  Google Scholar 

  • Dentinger PM, Krafcik KL, Simison KL, Janek RP, Hachman J (2002) High aspect ratio patterning with a proximity ultraviolet source. Microelectron Eng 61–62:1001–1007

    Article  Google Scholar 

  • Dervisevic M, Dervisevic E, Senel M, Cevik E, Yildiz HB, Camurlu P (2017) Construction of ferrocene modified conducting polymer based amperometric urea biosensor. Enzyme Microb Technol 102:53–59

    Article  Google Scholar 

  • Esquivel JP, Senn T, Hernández-Fernández P, Santander J, Lörgen M, Rojas S, Löchel B, Cané C, Sabaté N (2010) Towards a compact SU-8 micro-direct methanol fuel cell. J Power Sources 195:8110–8115

    Article  Google Scholar 

  • Esquivel JP, Del Campo FJ, Gómez de la Fuente JL, Rojas S, Sabaté N (2014) Microfluidic fuel cells on paper: meeting the power needs of next generation lateral flow devices. Energy Environ Sci 7:1744–1749

    Article  Google Scholar 

  • Fischer PB, Chou SY (1993) Sub-50 nm high aspect-ratio silicon pillars, ridges, and trenches fabricated using ultrahigh resolution electron beam lithography and reactive ion etching. Appl Phys Lett 62:2989–2991

    Article  Google Scholar 

  • González-Guerrero MJ, Del Campo FJ, Leech D, Sabaté N (2017) Paper-based microfluidic biofuel cell operating under glucose concentrations within physiological range. Biosens Bioelectrons 90:475–480

    Article  Google Scholar 

  • Hsieh S-S, Kuo J-K, Hwang C-F, Tsai H-H (2004) A novel design and microfabrication for a micro PEMFC. Microsyst Technol 10:121–126

    Article  Google Scholar 

  • Hu W, Sarveswaran K, Lieberman M, Bernstein GH (2004) Sub-10 nm electron beam lithography using cold development of poly(methylmethacrylate). J Vac Sci Technol B 22:1711–1716

    Article  Google Scholar 

  • Jia W, Valdes-Ramirez G, Bandodkar AJ, Windmiller JR, Wang J (2013) Epidermal Biofuel Cells: energy harvesting from human perspiration. Angew Chem Int Ed 52:7233–7236

    Article  Google Scholar 

  • Ling Z, Lian K, Jian L (2000) Improved patterning quality of SU-8 microstructures by optimizing the exposure parameters. Proc SPIE 3999:1019–1027

    Article  Google Scholar 

  • Liu G, Tian Y, Zhang X (2003) Fabrication of microchannels in negative resist. Microsyst Technol 9:461–464

    Article  Google Scholar 

  • Liu G, Tian Y, Kan Y (2005) Fabrication of high-aspect-ratio microestructures using SU8 photoresist. Microsyst Technol 11:343–346

    Article  Google Scholar 

  • Pinyou P, Conzuelo F, Sliozberg K, Vivekananthan J, Contin A, Pöller S, Plumeré N, Schuhmann W (2015) Coupling of an enzymatic biofuel cell to an electrochemical cell for self-powered glucose sensing with optical readout. Bioelectrochem 106:22–27

    Article  Google Scholar 

  • Stavrinidis G, Michelakis K, Kontomitrou V, Giannakakis G, Sevrisarianos M, Sevrisarianos G, Chaniotakis N, Alifragis Y, Konstantinidis G (2016) SU-8 microneedles based dry electrode for electroencephalogram. Microelectron Eng 159:114–120

    Article  Google Scholar 

  • Torres N, Santander J, Esquivel JP, Sabaté N, Figueras E, Ivanov P, Fonseca L, Gràcia I, Cané C (2008) Performance optimization of a passive silicon-based micro-direct methanol fuel cell. Sens Actuators B 132:540–544

    Article  Google Scholar 

  • Verjulio RW, Santander J, Sabaté N, Esquivel JP, Torres-Herrero N, Habrioux A, Alonso-Vante N (2014) Fabrication and evaluation of a passive alkaline membrane micro direct methanol fuel cell. Int J Hydrogen Energy 39:5406–5413

    Article  Google Scholar 

  • Wan J, Deng S-R, Yang R, Shu Z, Lu B-R, Xie S-Q, Chen Y, Huq E, Liu R, Qu X-P (2009) Silicon nanowire sensor for gas detection fabricated by nanoimprint on SU8/SiO2/PMMA trilayer. Microelectron Eng 86:1238–1242

    Article  Google Scholar 

  • Wang X, Falk M, Ortiz R, Matsumura H, Bobacka J, Ludwig R, Bergelin M, Gorton L, Shleev S (2012) Mediatorless sugar/oxygen enzymatic fuel cells based on gold nanoparticle-modified electrodes. Biosens Bioelectron 31:219–225

    Article  Google Scholar 

  • Weinmueller C, Tautschnig G, Hotz N, Poulikakos D (2010) A flexible direct methanol micro-fuel cell based on metalized, photosensitive polymer film. J Power Sources 195:3849–3857

    Article  Google Scholar 

  • Williams JD, Wang W (2004) Study on the postbaking process and the effects on UV lithography of high aspect ratio SU-8 microstructures. J. Microlith Microfab Microsyst 3:563–568

    Google Scholar 

  • Yang R, Wang W (2005) A numerical and experimental study on gap compensation and wavelength selection in UV-lithography of ultra-high aspect ratio SU-8 microstructures. Sensors Actuators B 110:279–288

    Article  Google Scholar 

  • Zhou M (2015) Recent progress on the development of biofuel cells for self-powered electrochemical biosensing and logical biosensing: a review. Electroanal 27:1786–1810

    Article  Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge CONACYT for financial support through “Cátedras CONACyT” project 513 and project FOMIX 279788. The author ALV thanks the Universidad de Antioquia.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Dector.

Ethics declarations

Conflict of interest

The authors have declared no conflict of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dector, D., Olivares-Ramírez, J.M., Ovando-Medina, V.M. et al. Fabrication and evaluation of a passive SU8-based micro direct glucose fuel cell. Microsyst Technol 25, 211–216 (2019). https://doi.org/10.1007/s00542-018-3950-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00542-018-3950-y

Navigation